跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖婉君
研究生(外文):Wan-Jiun Liao
論文名稱:以初次採樣密度與管制值為基礎的調整式叢集採樣改善克金利推估應用於污染場址的界定
論文名稱(外文):Using adaptive cluster sampling based on first sampling density and regulation thresholds to improve kriging estimation on the delineation of contaminated sites
指導教授:李達源李達源引用關係
指導教授(外文):Dar-Yuan Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:75
中文關鍵詞:採樣設計調整式叢集採樣簡單隨機採樣克利金錯判率風險評估土壤復育
外文關鍵詞:sampling designadaptive cluster samplingsimple random samplingkrigingmisclassification raterisk assessmentsoil remediation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
污染物在土壤中的空間分佈是污染區風險評估及整治復育的重要依據。近來,地理統計的克利金法常被應用於推估土壤污染物含量的空間分佈,可有助於界定土壤污染範圍並做為危害風險評估與整治復育的參考。然而當污染物濃度接近危害管制值,且其所在位置周圍附近採樣密度又偏低的情況下,可能會使克利金法推估的空間分佈圖應用在界定污染危害範圍時,產生較大的誤判率,而導致整治資源的浪費或造成環境的潛在威脅。因此本研究同時考慮初次採樣密度與污染濃度管制值,利用調整式叢集採樣方法,以期能降低克利金推估應用在界定危害範圍時的錯判率。調整式叢集採樣方法是以初次採樣的樣本資料為基礎,依據調查目的設定再次採樣的需求指標(requirement index),符合需求指標的位置會優先選取進行再次採樣。本研究利用交叉驗證法,計算初次採樣位置的克利金推估值和標準差,以推估值和管制值的差(deviation)與克利金標準差(kriging standard deviation)的比值做為再次採樣的需求指標,該指標的絕對值愈小即表示該採樣點附近的濃度愈接近污染管制值且初次採樣密度較低,應優先選出並在其附近的適當位置進行再次採樣。為確認本方法的適用性,故在本研究中模擬調整式叢集採樣和簡單隨機採樣取得土壤樣本,以比較不同
採樣方法對應用克利金推估界定危害範圍的影響。本研究以臺灣彰化縣境內的重金屬污染農地為例,選用土壤中鎳濃度資料進行本研究的測試模擬與比較說明。結果顯示,考慮初次採樣密度與管制值的調整式叢集採樣相較於簡單隨機採樣,能將再次採樣的樣本位置優先配置於鎳濃度接近管制值的區域和初次採樣密度較低的位置,因此有助於提升克利金推估的準確度。而且由模擬結果發現,相較於簡單隨機採樣,使用調整式叢集採樣能減少以克利金推估值界定污染危害範圍的錯判率。如此可更精準的將克利金推估之污染分佈圖,應用於危害範圍的界定,以提供土壤整治復育或進一步細密調查之用。
Spatial distributions of a pollutant in contaminated soil are essential for risk assessment and soil
remediation. Recently, the kriging technique is frequently used in spatial interpolation of pollutant concentrations to delineate contamination for hazardous risk assessment and soil remediation. However, high misclassification rates of hazardous area delineation with kriging estimated values of pollutant concentration will happen at the locations, where pollutant concentrations are close to the regulation thresholds for declaring hazardous areas and first sampling density is low. This situation consequently results in high cost of remediation and disadvantage impacts on environment health. Thus, in order to reduce the misclassification rate of hazardous area delineations with kriging pollutant concentrations, an adaptive sampling approach, called adaptive cluster sampling, based on the first sampling density and regulation threshold of pollutant concentrations was proposed to improve kriging estimation in this study. The adaptive sampling given a selected requirement index, which determining the priority of candidate locations for further sampling, was used to draw the additional samples at the locations where pollutant concentrations are close to the regulation thresholds and first sampling density is low. For assessing the feasibility of the adaptive sampling approach, a comparison of adaptive cluster sampling (ACS) and simple random sampling (SRS) was carried out in simulation. A data set of soil Ni concentrations in a heavy-metal contaminated site in Changhua County, Taiwan, was used for illustration. The results showed that the additional samples with Ni concentrations close to the regulation threshold (Ni = 200 mg kg-1) were drawn in ACS but not in SRS. Simultaneously, the sampling configuration of additional samples in ACS was on the locations where first sampling density is low but was that in SRS randomly spreading on the site. The precision of kriging estimation of Ni concentrations based on the observations sampled in ACS was thus relatively higher than that based on the observations sampled in SRS. Compared with using SRS, using ACS could reduce the misclassification rate of hazardous area delineations with kriging Ni concentrations in the results of simulation.
目錄
中文摘要要............................................Ⅰ
英文摘要..............................................Ⅲ
目錄..................................................Ⅴ
表次..................................................Ⅶ
圖次..................................................Ⅷ
第一章 序言............................................1
第二章 原理............................................7
第一節 標準化等級順序統計量轉換........................7
第二節 地理統計........................................9
第三節 克利金法........................................21
第三章 材料與方法......................................27
第一節 資料來源........................................27
第二節 資料統計及空間結構分析..........................31
第三節 採樣模擬與步驟..................................32
第四節 驗證............................................41
第五節 主要應用軟體....................................45
第四章 結果與討論......................................47
第一節 土壤鎳濃度資料的基本統計分析與空間結構分析......47
第二節 調整式叢集採樣(ACS)與簡單隨機採樣(SRS)的比較....52
第五章 結論............................................69
第六章 參考文獻........................................70
第七章 附錄............................................74

表 次

表一、環保署暫定台灣地區土壤鎳濃度等級區分表...........35
表二、以 GS+ 作地理統計推估之參數設定..................46
表三、土壤鎳濃度資料的敘述統計量.......................48
表四、調整式叢集採樣法(ACS)在各模擬採樣條件下經克利金
推估後的平均全區錯判率...........................53
表五、簡單隨機採樣法(SRS)在各模擬採樣條件下經克利金
推估後的平均全區錯判率...........................54
表六、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之單一區塊錯判率的頻度分佈(初次
採樣數20) .......................................66
表七、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之單一區塊錯判率的頻度分佈(初次
採樣數30) .......................................67
表八、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之單一區塊錯判率的頻度分佈(初次
採樣數40) .......................................68

圖 次

圖一、採樣點位於彰化縣境內之位置圖.....................28
圖二、研究區各採樣點之鎳濃度及座標位置.................30
圖三、研究之流程圖.....................................33
圖四、研究區土壤中鎳濃度分佈圖.........................42
圖五、土壤鎳濃度資料的直方圖...........................49

圖六、(a) 土壤鎳濃度資料與 (b) 標準化等級順序統計量
轉換資料的等向性半變異圖.........................51

圖七、調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
分別在各模擬採樣條件下經克利金推估後的平均全區
錯判率與總樣本數之關係圖.........................55

圖八、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之全區錯判率的頻度分佈圖(初次採樣
   數20) ...........................................57

圖九、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之全區錯判率的頻度分佈圖(初次採樣
   數30) ...........................................58

圖十、以調整式叢集採樣法(ACS)與簡單隨機採樣法(SRS)
模擬克利金推估之全區錯判率的頻度分佈圖(初次採樣
   數40) ...........................................59

圖十一、以(a) 調整式叢集採樣法(ACS)與(b) 簡單隨機採
樣法(SRS)模擬克利金推估之單一區塊錯判率的空間
分佈圖(初次採樣數20) ..........................62

圖十二、以(a) 調整式叢集採樣法(ACS)與(b) 簡單隨機採
樣法(SRS)模擬克利金推估之單一區塊錯判率的空間
分佈圖(初次採樣數30) ..........................63

圖十二、以(a) 調整式叢集採樣法(ACS)與(b) 簡單隨機採
樣法(SRS)模擬克利金推估之單一區塊錯判率的空間
分佈圖(初次採樣數40) ..........................64
行政院環境保護署。2002。農地土壤重金屬調查與場址列管計畫(111公頃農地土壤重金屬調查與場址列管計畫)。計畫編號:EPA-90-GA13-03-90A285。台北市。

莊愷瑋。1995。地理統計預測污染土壤中重金屬的空間分佈。碩士論文。國立臺灣大學農業化學研究所。

莊愷瑋、李達源、陳尊賢。1996。地理統計預測污染土壤中重金屬的空間分佈: II.採樣方式之探討。中國農業化學會誌,34:683-694。

莊愷瑋、李達源。2001。地理統計於重金屬污染場址危害範圍界定之應用。地理統計在農業和環境科學之應用研討會論文集。第57-78頁。 台北市。

Alloway, B. J. 1995. Heavy Metals in Soils. London Glasgow, Blackie Academic and Professional.

Armstrong, M., and R. Jabin. 1981. Variogram models must be positive-define. Math. Geol. 13 : 455-459.

Armstrong, M. 1998. Basic Linear Geostatistics. Springer-Verlag, Berlin, Germany.

Burgess, T., R. Webster, and A. MacBratney. 1981. Optimal interpolation and isarithmic mapping of soil properties. IV. Sampling strategy. J. Soil Sci. 32:643-659.

Candela, L., R. A. Olea, and E. Custodio. 1988. Lognormal kriging for the assessment of reliability in groundwater quality control observation networks. J. Hydrol. 103:67-84.

Christakos, G. and R. A. Olea. 1992. Sampling design for spatially distributed hydrogeologic and environmental processes. Adv. Water Resour. 15:219-237.

Clark, I. 1979. Practical geostatistics. Applied Science Publishers, Essex, England.

Cressie, N. A. C. 1991. Statistics for spatial data. John Wiley & Sons, Inc., New York.

Englund, E. and A. Sparks. 1988. GEO-EAS, geostatistical environmen_ tal assessment Software, user’s guide. USEPA rep. 600/4-88/033. USEPA, Las Vegas. NV.

Englund, E. J. and N. Heravi. 1994. Phased sampling for soil remediation. Environ. Ecol. Stat. 1:247-263.

Gamma Design. 2000. GS+ Geostatistics for the environmental sciences. Version 5. 1. 1. Gamma Design Software, Plainwell, MI.

Gringarten, E. and C.V. Deutsch. 2001. Teacher’s aide: variogram interpretation and modeling. Math. Geol. 33:507–534.

Hughes, J. P., and D. P. Lettenmaier. 1981. Data requirements for kriging: estimation and network design. Water Resour. Res. 17:1641-1650.

Hsiao., C. K., K. W. Juang, and D. Y. Lee. 2000. Estimating the second- stage sample size and the most probable number of hot spots from a first-stage sample of heavy-metal contaminated soil. Geoderma 95:73-88

Isaaks, E. H., and R. M. Srivastava. 1989. An introduction to applied geostatistics. Oxford Univ. Press, New York.

Journel, A. G., and C. J. Huijbregts. 1978. Mining Geostatistics. Academic
Press, New York.

Journel, A. G. 1988. Nonparametric geostatistics for risk and additional sampling assessment. p. 45-72. In L. H. Keith (ed.) Principles of environmental sampling. American Chemical Society.

Juang, K. W., and D. Y. Lee. 1998a. Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environ. Sci. Technol. 32:2487-2493.

Juang, K. W., and D. Y. Lee. 1998b. Acomparison of three kriging methods using auxiliary variables in heavy-metal contaminated soils. J. Environ. Qual. 27:355-363.

Juang, K. W., D. Y. Lee, and Z.S. Chen. 1999. Geostatistical cross-validation for the design of additional sampling regimes in heavy-metal contaminated soils. J. Chinese Institute of Environ. Engineering 9:89-95.

Juang, K. W., and D. Y. Lee. 2000. Comparison of three nonparametric kriging methods for delineating heavy-metal contaminated soils. J. Environ. Qual. 29:197-205.

Juang, K. W., D. Y. Lee, and T. R. Ellsworth. 2001. Using rank order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site. J. Environ. Qual. 30:894-903.

Juang, K. W., L. F. Wu, and D.Y. Lee. 2004a. Adaptive sampling used for kriging maps of heavy metals in contaminated soils. J. Chinese Institute of Environ. Engineering 14:17-24.

Juang, K. W., Y. S. Chen, and D. Y. Lee. 2004b. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution 127:229-238.

Juang, K. W., D.Y. Lee, and Y. L. Teng. 2005. Adaptive sampling based on cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging. Environmental Pollution (in press).

Kravchenko, A. N. 2003. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J. 67:1564-1571.

Lee, Y. M. and J. H. Ellis. 1997. On the equivalence of kriging and maximum entropy estimators. Math. Geol. 29:131-152.

McGrath, D., C. Zhang, and O. T. Carton. 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area. Environ. Pollut. 127:239-248.

Mood, A. M., F. A. Graybill, and D. C. Bols. 1974. Introduction to the theory of statistics, 3rd ed. McGraw-Hill Book Company.

Thompson, S. K. 1990. Adative cluster sampling. J. Am. Stat. Assoc. 85:1050-1059.

Thompson, S. K. and G. A. F. Seber. 1996. Adative sampling. John Wiley & Sons, Inc., New York.

Van Meirvenne, M., and P. Goovaerts. 2001. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma 102:75-100.

Van Groenigen, J. W., W. Siderius, A. Stein. 1999. Constrained optimization of soil sampling for minimization of the kriging variance. Geoderma 87:239-259.

Webster, R., and M. A. Oliver. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford Univ. Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top