跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊凱元
研究生(外文):Kai-Yuan Yang
論文名稱:逆流式水泥旋轉窯三維燃燒流場之廢熱回收於燃料電池之應用可能性分析
論文名稱(外文):Predictive Application of Retrievable Waste Heat of the Cement Industrial Rotary Kiln on Solid Oxide Fuel Cells
指導教授:吳中興吳中興引用關係
指導教授(外文):Chung-Hsing Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:50
中文關鍵詞:廢熱回收固態氧化燃料電池(SOFC)旋轉窯 (RKI)電腦輔助工程(CAE)計算流體力學 (CFD)FLUENT有限體積法 (FVM)
外文關鍵詞:waste heat managementsolid oxide fuel cell (SOFC)rotary kiln incinerator (RKI)computer-aided engineering (CAE)computational fluid dynamics (CFD)FLUENTfinite volume method (FVM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一全新的技術觀念:利用目前現存之旋轉窯熱流場提供固態氧化燃料電池(SOLID OXIDE FUEL CELL, SOFC)所需之高溫操作環境。現今的新型管式SOFC設計 (TSOFC) 更適合於旋轉窯之安裝與操作,為數種燃料電池中最為適與汽電共生或與焚化爐結合的類型。
故本文以其為研究對象,合理地假設並評估其安裝的可行性,並發現妥善安排的燃料電池模組共可產出達39.59MW的電能。
本實驗並採用計算流體力學軟體FLUENT之有限體積分析法解工業用旋轉窯焚化爐窯體內之熱流場、向量場、與物質反應的偏微分方程式,以反應操作模式中燃燒所需之過剩空氣量與溫度、旋轉爐之旋轉速度為主要參數,模擬燃燒氣體熱流場與旋轉窯壁之熱傳模式。模擬結果與實際現場量測所得之溫度數值作相互比對,以進行各不同之燃燒反應參數在流場顯影之探討,最後並依照其燃燒熱流場及窯壁內部溫度之分佈預測,進行固態氧化物燃料電池於旋轉窯爐床安裝之可行性探討。
When meeting the shortage of fossil fuels and the coming era of hydrogen energy, fuel cell energy emerged to be a promising technology in energy utilization in the future.
Developed to work at 800 to 1,000 degree Celsiusand and up to 15 atm (tested by Ontario Hydro Technology), solid oxide fuel cells (SOFCs) can generate the maximum power output among all types of fuel cells. However, when operating the SOFCs, great amount of fossil fuel is actually consumed in order to meet their high-temperature demand. High amount of secondary pollutants are expelled accordingly.
A possible brand new idea is thus proposed in this paper—a state-of-the-art tubular SOFC (TSOFC) can be installed either in the three dimensional heat flow field inside the cement industrial rotary kiln incinerator (RKI, located in Kaohsiung, Taiwan) or within its refractory layer where high temperature environment sustains around the clock when operating for the cement production. In this paper, simulation of the heat flow field and species remained after combustion in this kiln incinerator is achieved with the help of modern computer aided engineering (CAE) tool.
Suitable manipulating regions are to be found and predicted via the commercially available CFD code FLUENT. Parameter of excess air values are the primary variable, the detailed interior heat flow field and the heat transfer model in the kiln shell are the secondary variables for evaluating the installation of SOFCs into rotary kilns.
Before going on this study, kinetic parameters are parametrically varied and finite volume method (FVM) is introduced to solve the heat flow field and the visualization of the three dimensional flame structure is performed. Meanwhile, simulation of temperature results is compared with on-site field experiments and the installation possibilities of the SOFC on the rotary kiln incinerator can be reasonably predicted and assured
Abstract in Chinese------------------------------------------------------------1
Abstract in English------------------------------------------------------------2
Nomenclature-------------------------------------------------------------------3
Table of Contents--------------------------------------------------------------5
List of Figures ----------------------------------------------------------------7
List of Tables --------------------------------------------------------------------9

Chapter 1 Introduction-----------------------------------------10
Chapter 2 Literature Review-----------------------------------------11
Chapter 3 Physical Descriptions-------------------------------------13
3.1. Solid Oxide Fuel Cell-----------------------------------------------13
3.2. Cement Industry----------------------------------------------------17
3.2.1. Rotary Kiln-------------------------------------------------------17
3.2.2. Cement Formation Process------------------------------------18
3.2.3. Combustion Fuels of the Rotary Kiln-------------------------19
Chapter 4 Results and Discussions------------------23
4.1. Numerical Approach of the Kiln Incinerator----------------23
4.2. Installation Possibility inside the Furnace Body-----------28
4.3. Installation Possibility inside the Refractory Layer around the Kiln Shell-----30
4.4. Power Estimation and Possible Strategy for Installing SOFC Stacks-----33
Chapter 5 Conclusion Remarks--------------------------------36
References-------------------------------------------------------37
Appendix -------------------------------------------------------------40
Author Resume-----------------------------------------------------50
[1]. Andrea, P. O., D. S. Itamar, J. M. Genesio and D. S. Rogerio Jose, 1998. “Efficiency of destruction of waste used in the co-incineration in the rotary kilns”. Energy Conversion Management. Vol. 39, pp. 1899-1909.
[2]. Caretto, L.S., A.D. Gosman, S.V. Patankar and D.B. Spalding, 1972. “Two calculation procedures for steady, three-dimensional flows with recirculation”. Proc. 3rd. Int''l Conference on Numerical Methods for Fluid Mechanics. Lecture Notes on Physics, Springer-Verlag: New York. Vol. 19, pp. 60-68.
[3]. Chen, K. S. and M. Lee, 1995. “Visualization studies of three dimensional flow and solid motion in a rotary kiln”. Hazardous waste and hazardous materials. Vol. 12, No. 4, pp. 395-409.
[4].Cheng, D.Y. and W.H. Zheng, 1992. Introduction to Industrial Kiln Operation. Xu’s Foundation
[5]. Cundy, V. A. and C. A. Cook, 1996. “Three dimensional numerical modeling of a field-scale rotary kiln incinerator”. Environmental Science and Technology.
[6]. El-Banhawy, Y.H., Siv-Asegaram, S. 1983. “Premixed, turbulent combustion of a sudden-expansion flow”. Combustion and Flame. Vol. 80, pp 153-165.
[7].Feng, M., J. Goodenough, K. Huang and C. Milliken. 1996. Journal of Power Sources. Vol. 64. pp.47.
[8].Irvine, J.T.S. and A. Sauve. 2001. “Improved oxidation of hydrocarbons with new electrodes in high temperature fuel cell”. Fuel Cells. 1(34), pp. 205-210.
[9].Ishihara, T., H. Matsuda and Y. Takita.1994. “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor”. Journal of the American Chemical Society. 116 (9). pp. 3801-3803
[10].James, L. and D. Andrew. 2003. Fuel Cell System Explained. John Wiley & Sons. pp. 207-226.
[11]. Khan, J. A., D. Pal and J. S. Morse, 1993. “Numerical modeling of a rotary kiln incinerator”. Hazardous Waste and Hazardous Materials. Vol. 10, pp. 81-95.
[12]. Kramker, F. A. and J. B. Wilson, 1986. “Computer simulation of a rotary dryer Part II: Heat and Mass Transfer”. AIChE. Vol. 32, No. 2, pp. 269-275.
[13]. Lewis, M. H. and L. D. Smoot, 1982 “Turbulent gaseous combustion and flame”. Vol. 42, pp. 183-196.
[14]. Linak, W. P., J. D. Kilgroe and J. E. Mcsorley, 1987. “On the occurrence of transient puffs in a rotary kiln incineration simulator I. Prototype Solid Plastic Wastes”. JAPCA Journal. Vol. 37, pp. 54-64.
[15]. Magnussen, B.F. and B.H. Hjertager, 1976. “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion”. Sixteenth International Symposium on Combustion. The Combustion Institute, pp 719-729.
[16].Mastorakos, E. et al., 1999. “CFD prediction for cement kilns including flame modeling, heat transfer and clinker chemistry”. Applied Mathematical Modeling. Vol. 23, pp. 55-76.
[17]. Patankar, S.V. and D.B. Spalding, 1972. “A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flows”. International J. Heat Mass Transfer. Vol. 15, pp. 1787-1806.
[18].Perry, M.E., T. Tsai and S.A. Barnett. 1999. “A direct methane fuel cell with ceria-based anode”. Nature. 400, pp. 649-651.
[19]. Pershing, D. W., J. S. Lighty, G. D. Silcox, M. P. Heap and W. D. Owens, 1993. “Solid waste incineration in rotary kilns”. Combustion Science and Technology. Vol. 93, pp. 245-276.
[20]. Silcox, G. D., F. S. Larsen and D. W. Pershing, 1990. “Mathematical and physical modeling of rotary kilns with application to scaling and design”. Incineration of Hazardous Waste and Toxic Combustion By-products.
[21]. Spalding, D.B. 1971. “Mixing and chemical reaction in steady confined turbulent flames”. 13th International Symposium on Combustion—The Combustion Institute. pp. 649-657.
[22]. Thurnau, R. C. and J. A. Manning, 1995. “Low temperature desorption application of a derect-fired rotary kiln incinerator”. Journal of Air and Waste Manage Association. Vol. 46, pp. 12-19.
[23]. Veranth, J. M., G. D. Silcox and D. W. Pershing, 1997. “Numerical modeling of the temperature distribution in a commercial hazardous waste slagging rotary kiln”. Environmental Science and Technology. Vol. 31, pp. 2534-2539.
[24]. Versteeg, H.K. and W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics, the Finite Volume Method. Addison Wesley Longman: England. pp. 100-102.
[24]. Walter, H. D., Cement-Data-Book. 1976. Bauverlag GmbH Wiesbaden und Berlin. p.336
[25]. Wu, C.H., Z.W. Wu, S.Z. Su, H.P. Lin and Z.Y. Dai. 1996. Integrated Research of Waste Incineration. Technical Report of National Science Council. Vol. 1, pp. 78-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 姜定宇、鄭伯壎(2003)。組織忠誠、組織承諾、及組織公民行為研究之回顧與前瞻。「應用心理研究」,19,175-210。
2. 周麗芳(2002)。華人組織中的關係與社會網絡。「本土心理學研究」,18,175-228。
3. 沈其泰、黃敏萍、及鄭伯壎(2004)。團隊共享心智模式與知識分享行為:成員性格特質與性格相似性的調節效果。「管理學報」,21(5),553-570。
4. 白崇亮(1986)。組織承諾研究-理論與實證。「管理評論」,5(2),30-51。
5. 姜定宇、鄭伯壎、任金剛、及黃政瑋(2003)。組織忠誠:本土建構與測量。「本土心理學研究」,19,273-337。
6. 姜定宇、鄭伯壎、任金剛、及謝宜君(2005)。主管忠誠:華人本土構念的美國驗證。「中華心理學刊」,47(2),139-156。
7. 徐瑋伶、鄭伯壎、及黃敏萍(2002)。華人企業領導人的員工歸類與管理行為。「本土心理學研究」,18,51-94。
8. 郭建志(2003)。組織文化研究之回顧與前瞻。「應用心理研究」,20,83-113。
9. 楊宜音(2000)。自己人:一項有關中國人關係分類的個案研究。「本土心理學研究」,13,277-316。
10. 樊景立、鄭伯壎(2000)。華人組織的家長式領導:一項文化觀點的分析。「本土心理學研究」,13,127-180。
11. 鄭伯壎(1995)。差序格局與華人組織行為。「本土心理學研究」,3,142-219。
12. 鄭伯壎、周麗芳、及樊景立(2000)。家長式領導量表:三元模式的建構與測量。「本土心理學研究」,14,3-64。
13. 鄭伯壎、姜定宇(2000)。華人組織中的主管忠誠:主位與客位概念對員工效能的效果。「本土心理學研究」,14,65-114。
14. 鄭伯壎、郭建志(1993)。組織價值觀與個人工作效能:符合度研究途徑。「中央研究院民族學研究所集刊」,75,69-103。
15. 楊孝濚,〈社區營造條例-社區法與社區發展實質運作〉。《社區發展季刊》,第107期,民93.9,頁32-41。