(3.236.231.14) 您好!臺灣時間:2021/04/14 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林韶凱
研究生(外文):Shao-Kai Lin
論文名稱:高溫與水稻穎果基因表現及稻米品質形成相關性之研究
論文名稱(外文):Study on the Relationship between High Temperature, Caryopsis Gene Expression, and Quality Formation in Rice (Oryza sativa L.)
指導教授:盧虎生盧虎生引用關係
指導教授(外文):Huu-Sheng Lur
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:173
中文關鍵詞:蛋白質體水稻高溫逆境穎果品質
外文關鍵詞:proteomicsricehigh temperaturestresscaryopsisquality
相關次數:
  • 被引用被引用:5
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一章
蛋白質為影響水稻穎果發育及稻米品質形成的主要因子,溫度則為主要影響稻米品質的環境因子。本研究建立水稻穎果發育期間蛋白質表現之雙向電泳圖譜,再以液相層析串聯式質譜儀(LC-MS/MS)鑑定具表現差異的蛋白質。水稻穎果之蛋白質雙向電泳可分離出超過400個於發育期間表現的蛋白質。其中包括許多溫度處理具差異表現的蛋白質,亦有水稻品種間具差異表現的蛋白質,其中利用質譜分析已鑑定出具表現差異的蛋白質共70個,其中54個為已知功能的蛋白質;包括21個與碳水化合物生合成與代謝相關的蛋白質,14個與蛋白質生合成與累積相關的蛋白質,9個與逆境反應有關的蛋白質。Waxy蛋白質與glutelins為隨著水稻穎果發育期呈顯著增加的蛋白質。 Allergen-like proteins, pyruvate orthophosphate dikinase 及 NADH-dependent sorbitol dehydrogenase, 也在穎果發育期間表現,且扮演其重要的生理角色與功能。其中, Waxy蛋白質各isoforms的表現量與amylose 的含量成正相關。此外,本研究找出一個基因,具有高度GC比例的DNA序列,且可能與心腹白的形成有關。高溫(35/30 ℃)會降低Waxy 蛋白質、allergen-like proteins以及elongation factor 1 β的表現。然而,一群低分子量的heat shock proteins (sHSP)、glyceraldehyde-3-phosphate dehydrogenase以及prolamin等蛋白質的表現量會增加。sHSP的含量與心腹白的程度呈正相關。穎果發育期間,glutelins會發生phosphorylation與glycosylation的現象,顯示此類分子具轉譯後修飾的作用。本文亦探討數個可能與品質形成有關的蛋白質。此外,本研究亦利用RT-PCR確認相關基因在RNA層次上的表現。

第二章
稻米品質是水稻穎果發育期間一連串的生理及生化反應所累積的結果,而溫度是影響稻米品質形成的主要環境因子之一。基於高溫環境使稻米品質降低之觀點,本研究之目的為探討溫度對水稻穎果發育過程中基因表現之影響,及其與稻米品質形成之關係。結果顯示,以紅外線熱感應分析,發現水稻穎果為不良之散熱體,相對受高溫之影響較顯著。高溫環境使穗重、充實率以及千粒重減低,導致最終產量下降,且造成嚴重之心腹白外觀性狀。此外,高溫會影響水稻穎果分化及降低細胞核內DNA再複製之生理現象,同時使稉稻品種之直鏈澱粉含量減低及粗蛋白質含量下降。此外,RVA分析結果顯示高溫環境生產的稻米,其米粉之膠化溫度提高,膠體硬度增加以及黏度參數等性質的改變。
澱粉及蛋白質是決定稻米品質的主要因子,澱粉合成方面,本研究室發現高溫環境使稉稻品種之GBSS基因表現減少,而秈稻品種之starch synthase Ⅱ表現增加,雖機制不同,然而其結果都會導致直鏈澱粉含量之下降。蛋白質組成方面,高溫對貯藏性蛋白質的影響隨品種而異。高溫導致TNG67、TN1與Koshihikari的成熟穎果之prolamins含量顯著下降,亦使TNG67及TN1之glutelins含量降低,然而對Koshihikari之glutelins含量的影響並不顯著。直鏈澱粉及總蛋白質含量的降低,將導致稻米膠化溫度上升、尖峰黏度下降及膠體硬度增加。另一方面,高溫環境會提高穎果內16.9c HSP, 17.9 HSP, 18 HSP, glyceraldehyde-3- phosphate dehydrogenase及elongation factor 1 beta蛋白質之含量;降低nucleotide diphosphate kinase與allergen-like protein之表現量。綜合本研究的分析結果推論,高溫對澱粉含量與結構以及穎果內蛋白質種類及組成的總合改變,為高溫造成稻米品質降低之主因。
Chapter 1
Proteins are essential to rice caryopsis development and quality formation. High temperature is an important environmental factor which may decrease grain quality. In the present study rice caryopsis proteins were profiled by two-dimensional polyacrylamide gel electrophoresis, and differentially expressed proteins were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Expressions of more than 400 polypeptide spots during caryopsis development, in response to temperature treatments or between varieties were monitored. Among them, more than 70 differentially expressed polypeptides were analyzed by LCMSMS and 54 proteins were identified with known functions. Of these, 21 were involved with carbohydrate metabolism, 14 with protein synthesis and sorting, and 9 with stress responses. Waxy (Wx) proteins and glutelins were the most prominous spots increased significantly during development. Allergen-like proteins, pyruvate orthophosphate dikinase and NADH-dependent sorbitol dehydrogenase, were also expressed during development, implying their physiological roles in caryopsis. Expression of large isoforms of Wx proteins was correlated with the amylose content of rice caryopsis. One protein with high GC content in its DNA sequence was correlated with the chalky trait of kernels. High temperature (35/30 ℃) decreased expression of Wx proteins, allergen-like proteins and elongation factor 1 β, but increased expression of small heat shock proteins (sHSP), glyceraldehyde-3-phosphate dehydrogenase and prolamin. The level of sHSP was positively correlated with the appearance of chalky kernels. During development, glutelins were phosphorylated and glycosylated, indicating these molecules were post-translationally modified. Possible functions of the expression of candidate proteins on grain quality are discussed. In addition, the expression of related genes at the RNA level were also monitored by RT-PCR.

Chapter 2
Temperature is a major environmental factor on grains quality formation. High temperature may reduce rice grains quality. The components of starch and proteins are the other factors to influence the grain quality of rice. Under temperature influences, the final grain quality of caryopsis is determined by the physiological responses of biochemical processes and dry mass accumulation during caryopsis development. The present study focused on the relationship between the effects of high temperature on gene expression profilings and grain quality formation during developmental stages in rice caryopsis. The result of thermo-images analysis showed that rice panicles or grains dissipated heat slowly as compared to other organs, implying that rice panicles may be more sensitive and vulnerable to high-temperature environment. High temperature leads to decrease in panicle weight, filled spikelets rate, thousand spikelets weight and grains yield; produced sever chalky appearance kernels on panicles. High temperature influenced endosperm cell differentiation and reduced DNA endoreduplication. In japonica type rice, high temperature also resulted in lower amylose and protein contents. In grain physical chemical properties, high temperature decreased viscosity but increased pasting temperature and gel consistency of brown rice flour.
At molecular basis, high temperature reduced the expression of GBSS in Japonica rice varieties; as TNG67, however, high temperature enhanced starch synthase II gene expression in Indica rice varieties, as TN1. Either the decrease of GBSS or increase of starch synthase II would lead to a lower amylase ratio in rice grains. Prolamins contents declined in mature rice grains of all three cultivars grown at high temperature. However, the effects of high temperature on storage proteins were different with varieties. The changing in amylose and protein contents may cause the observed negative effect of physical chemical characteristics of the rice flour. In addition, high temperature could enhance the proteins expression of 16.9c HSP, 17.9 HSP, 18 HSP, glyceraldehyde-3- phosphate dehydrogenase and elongation factor 1 beta, while reduced the expression of nucleotide diphosphate kinase and allergen-like proteins.
Based on the present results, high temperature caused a complex physiological and metabolic responses related to starch and protein accumulation and packing in rice grains. Thus resulted in defective quality of rice grain. A schematic model has been proposed to depict the influence of high temperature on grain quality formation in rice.
目錄
圖表目錄.........................................................Ⅱ
附錄目錄.........................................................Ⅲ
縮寫字對照表.....................................................Ⅳ

第一章
題目:溫度對水稻穎果充實期間蛋白質表現之影響................ 1
中文摘要.......................................................... 2
英文摘要.......................................................... 3
壹、前言.......................................................... 4
貳、文獻回顧..................................................... 5
第一章參考文獻
洪傳揚。2003。利用轉殖水稻種子表現重組蛋白質之研究。國立台灣大學農藝學系 博士論文。
陳秀慧。 2000。稻米榖粒中鈣、鎂、鉀、直鏈澱粉及粗蛋白質含量之變異。國立台灣大學農藝學系 碩士論文。
黃基倬、盧虎生。2000。榖粒充實期間溫度對榖粒米質之影響 1.榖粒充實期間溫度對榖粒澱粉、蛋白質及米質之關係。中華農學會報 1:370-389。
劉明卿、蕭介宗。1995。 以近紅外線分光光度計偵測稻米的含水率及蛋白質含量。稻米加工自動化專輯第二冊 穀物非破壞性檢驗, 第71-84頁。
潘成玉。 2005。氮肥對水稻生育及穀粒蛋白質表現之影響。國立台灣大學農藝學系 碩士論文。
稻津 脩。1990。米品質作物學。良質味品種特性栽培。日作紀 59 : 611-615。
盧訓、宋勳、吳淑靜。 1988。 栽培環境及品種對稻米碾米品質與理化性質影響之研究。稻米品質研討會專集。 第189-198頁。 臺中區農業改良場,員林,臺灣。
簡珮如、盧虎生、朱鈞。 1997。 栽培時期對稻米貯存性蛋白質之影響。 中華農藝 7:333-342。
Abe, T., R.S. Gusti, M. Ono and T. Sasahara. 1996. Variation in glutelin and high molecular weight endosperm proteins among subspecies of rice (Oryza sartiva L.) detected by two-dimensional gel electrophoresis. Genes Genet. Syst. 71:63-68.
Adachi T., H. Izumi, T. Yamada, K. Tanaka, S. Takeuchi, R. Nakamura, and T. Matsuda. 1993. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family. Plant Mol. Biol. 21:239-248.
Aliaga-Morell, J.R., F.A. Culianez-Maoia, G. Clemente-Marin, and E. Primo-Yufera. 1987. Differentiation of rice varieties by electrophoresis of embryo proteins. Theor. Appl. Genet. 74:224.
Arumugam, P.M., Z. Lihuang, and T. Akiyama. 2002. Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice ( Oryza sativa L.). Theor. Appl. Genet. 105:34-42.
Asaoka, M., K. Okuno, and H. Fuwa. 1985. Effects of environment temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice. Agric. Biol. Chem. 49:373-379.
Bechtel, D.R., and B.O. Juliano. 1980. Formation of protein bodies in the starchy endosperm of rice (Oryza sativa L.):a reinvestigation. Ann. Bot. (London) 45: 503-509.
Blumenthal, C., P. J. Stone, P. W. Gras, F. Bekes, B. Clarke, E.W.R. Barlow, R. Appels, and C.W. Wrigley. 1998. Heat-Shock Protein 70 and Dough-Quality Changes Resulting from Heat Stress During Grain Filling in Wheat. Cereal Chem. 75:43-50.
Bouchez, D., and H. Hofte. 1998. Functional genomics in plants. Plant Physiol. 118:725-732.
Brown, R.C., B.E. Lemmon, and O.A. Olsen. 1996. Development of the endosperm in rice (Oryza sartiva L.) cellularization. J. Plant Res. 109:301-313.
Cagampang, G.B., A.A. Perdon, and B.O. Juliano. 1976. Change in salt-soluble proteins of rice during grain development. Phytochemistry 15:1425-1429.
Cagampang, G.B., C.M. Perez, and B.O. Juliano. 1973. A gel consistency for eating quality of rice. J. Sci. Food Agric. 24:1589-1594.
Cai, X.L., Z.Y. Wang, Y.Y. Xing, J.L. Zhang, and M.M. Hong. 1998. Aberrant splicing of intron 1 leads to the heterogenous 5’UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J. 14:459-465.
Chang, S., J. Puryear, and J. Cairney. 1993. A Simple and Efficient Method for Isolating RNA from Pine Trees. Plant Mol. Biol. Rep. 11:113-116.
Chittum, H.S., W.S. Lane, B.A. Carlson, P.P. Roller, F.D. Lung, B.J. Lee and D.L. Hatfield. 1998. Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochem. 37:10866–10870.
Chrastil, J. 1992. Correlations between the physicochemical and functional properties of rice. J. Agric. Food Chem. 40:1683-1686.
Delwiche, S.R., K.S. Mckenzie, and B.D. Webb. 1996. Quality characteristics in rice by near-infrared reflectance analysis of whole-grain milled samples. Cereal Chem. 73:257-263.
Delwiche, S.R., M.M. Bean, R.E. Miller, B.O. Webb, and P.C. Williams. 1995. Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chem.72:182-187.
Doehlert, D.C. 1987. Ketose reductase activity in developing maize endosperm. Plant Physiol. 84:830-834.
Ellis, J.R., P.J. Gates, and D. Boulter. 1987. Storage-protein deposition in the developing rice caryopsis in relation to the transport tissue. Ann. Bot. 60:663-670.
Eng, J.K., A.L. McCormick, and J.R. Yates. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Amer. Soc. Mass Spect. 5:976–989.
Fukuda, M., Islam, N., S.H. Woo., A. Yamagishi, M. Takaoka., and H. Hirano. 2003. Assessing matrix assisted laser desorption/ ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice. Electrophoresis 24:1319-29.
Furuta, M., H. Yamagata, K. Tanaka, Z. Kasai, and S. Fujii. 1986. Cell-free synthesis of the rice glutelin precursor. Plant Cell Physiol. 27:1201-1204.
Gharahdaghi, F., C.R. Weinberg, D.A. Meagher, B.S. Imai, and S.M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601-605.
Giroux, M.J., L. Talbert, D.K. Habernicht, S. Lanning, A. Hemphill, and J.M. Martin. 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40:370-374.
Glaszmann, J.C. 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74:21.
Harris, N., and B.O. Juliano. 1977. Ultrastructure of endosperm protein bodies in developing rice grains differing in protein content. Ann. Bot. 45:1-5.
He G.C., K. Kogure, and H. Susuki. 1990. Development of endosperm and synthesis of starch in rice grain. II synthesis of starch. Jpn. J. Crop Sci. 58:243-259.
Hibino, T., K. Kidzu, T. Masumura, K.Ohtsuki, K. Tanaka, M. Kawabata, and S. Fujii. 1989. Amino acid composition of rice prolamin polypeptides. Agric. Biol. Chem. 53:513-518.
Hirano, H.Y., Eiguchi M., and Y. Sano. 1998. A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol. Biol. Evol. 15:978-987.
Huang, J.J., and H.S. Lur. 2000. The influences of temperature during grain filling stage on grain quality in rice (Oryza sativa L.) 1.Effrcts of temperature on yield components, milling quality, and grain physico-chemical properties. J. Agric. Assoc. China 1:370-389.
Huebner, F.R., A. Hussain, G.L. Lookhart, J.A. Bietz, W. Bushuk, and B.O. Juliano. 1991. Discrimination of sister-line IR rice varieties by polyacrylamide gel electrophoresis and reversed-phase high-performance liquid chromatography. Cereal Chem. 68:583-588.
Huebner, F.R., J.A. Bietz, B.D. Webb, and B.O. Juliano. 1990. Rice cultivar identification by high-performance liquid chromatography of endosperm proteins. Cereal Chem. 67:129-135.
Humphery-Smith, I., and W. Blackstock. 1997. Proteome analysis: genomics via the output rather than the input code. J. Protein Chem. 16:537-544.
Hussain, A., M.G. Scanlon, B.O. Juliano, and W. Bushuk. 1989. Discrimination of rice cultivars by polyacrylamide gel electrophoresis and high-performance liquid chromatography. Cereal Chem. 66:353-356.
Imaizumi, N, M.S.B. Ku, K. Ishihara, and M. Samejima. 1997. Charaterization of the gene for pyruvate, orthophosphate dikinase from rice, a C3 plant, and a comparison of structure and expression between C3 and C4 genes for this protein. Plant Mol. Biol. 34:701-716.
Juliano, B.O. 1985. Biochemical properties of rice. p.175-197. In B.O. Juliano, (ed.) Rice : Chemistry and Technology. American Assoc. of Cereal Chemists. USA.
Juliano, B.O. 1971. A simplified assay for milled rice amylose. Cereal Chem. 16:334-340.
Juliano, B.O. 1972. Physicochemical properties of starch and protein in relation to grain quality and nutritional value of rice. p.389-405. Rice Breeding IRRI. Los Banos, Phillippines.
Kagawa, H., H. Hirano, and F. Kikuchi. 1988. Variation of glutelin seed storage protein in rice ( Oryza sativa L. ). Jpn. J. Breed. 38:327-332.
Katiyar-Agarwal, S., M. Agarwal, and A. Grover. 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51:677-686.
Kim, S.I., and D.H. Jo. 1983. Fractionation and electrophoretic patterns of rice proteins. J. Korean Agric. Chem. Soc. 26:65.
Kim, W.T., and T. W. Okita. 1988. Structure, expression, and heterogeneity of the rice seed prolamines. Plant Physiol. 88:649-655.
Koller, A., M.P. Washburn, B.M. Lange, N.L. Andon, C. Deciu, P.A. Haynes, L. Hays, D. Schieltz, R. Ulaszek, J. Wei, D. Wolters, and J.R. Yates. 2002. Proteomic survey of metabolic pathways in rice. Proc. Nat. Acad. Sci. USA 18:11969-11974.
Komatsu, S., H. Kjiwara, and H. Hirano. 1993. A rice protein library: a data-file of rice proteins separated by two-dimensional electrophoresis. Theor. Appl. Genet. 86:935-942.
Komatsu, S., H. Konishi, S. Shen, and G. Yang. 2003. Rice proteomics: a step toward functional analysis of the rice genome. Mol. Cellul. Prot. 2:2-10.
Krishnan, H.B., and T.W. Okita. 1986. Structural relationship among the rice glutelin polypeptides. Plant Physiol. 81:748-753.
Krishnan, H.B., V.R. Franceschi, and T.W. Okita. 1986. Immunochemical studies on the role of the golgi complex in protein-body formation in rice seeds. Planta 169:471-480.
Kumamaru, T., H. Satoh, N. Iwata, T. Omura, M. Ogawa, and K. Tanaka. 1988. Mutants for semidwarfism-related proteins and glutelin seed protein in rice ( Oryza sativa L. ). Theor. Appl. Genet. 83:153-158.
Larkin, P.D., and W.D. Park. 1999. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol. Biol. 40:719-727.
Larkin, P.D., A.M. McClung, N.M. Ayres, and W.D. Park. 2003. The effect of the Waxy locus (Granule Bound Starch Synthase) on pasting curve characteristics in specialty rices (Oryza sativa L.). Euphytica 131:243-253.
Li, J, and S.M. Assmann. 2000. Mass spectrometry. An essential tool in proteome analysis. Plant Physiol. 123:807-809.
Li, X., and T.W. Okita. 1993. Accumulation of prolamines and glutelins during rice seed development : a quantitative evaluation. Plant Cell Physiol. 34:385-390.
Little, R.R., G.B. Hilder, and E.H. Dawson. 1958. Differential effect of alkali on 25 varieties of milled rice. Cereal Chem. 35:11-126.
Liu, H.I., L.F. Lin, S. Song, and M.C. Hong. 1988. The study on the relationship of eating quality and chemical quality of different non-waxy rice species. Proceedings of symposium on rice grain quality. p.76-90 In S. Song, and M.C. Hong (eds.), Taichung District Agricultural Improvement Station, Taichung, Taiwan.
Lookhart, G.L., B.O. Juliano, and B.D. Webb. 1991. Effect of solvent extraction, environment, and genetic background on differentiating rice by reversed-phase high-performance liquid chromatography. Cereal Chem. 68:396-400.
Luthe, D.S. 1983. Storage protein accumulation in developing rice (Oryza Sativa L.) seeds. Plant Sci. Let. 32:147-158.
Majoul T, E. Bancel, E. Triboi, J. Ben-Hamida, and G. Branlard. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics 3:175-183.
Mandac, B.E., and B.O. Juliano. 1978. Properties of prolamine in mature and developing rice grain. Phytochemistry 17:611-614.
Masumura, T., N. Mitsukawa, K. Tanaka, and S. Fujii. 1991. Rice storage proteins : Genetic analysis of accumulation process. p.495-507. In Y.P.S. Bajaj (ed.) Biotechnology in Agriculture and Forestry. Vol. 14.
Matsue, Y. 1995a. Studies on palatability of rice in Northern Kyushu. V. Influence of abnormal weather in 1993 on the palatability and physicochemical characteristics of rice. Jpn. J. Crop Sci. 64:709-713.
Matsue, Y. 1995b. Studies on palatability of rice in Northern Kyushu. VI. Effect on seedling characteristics under abnormal weather in 1993 on palatability and physicochemical characteristics of rice. Jpn. J. Crop Sci. 64:714-716.
Matsue, Y., K. Odahara, and M. Hiramatsu. 1995. Differences in amylose content, amylographic characteristics and storage proteins of grains on primary and secondary rachis branches in rice. Jpn. J. Crop Sci. 64:601-606.
Muench, D.G., Y. Wu, Y. Zhang, X. Li, R.S. Boaton, and T.W. Okita. 1997. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol. 38:404-412.
Nagato, K., M. Ebata, and M. Ishikawa. 1972. Protein content of developing and mature rice grain. Jpn. J. Crop Sci. 41:472-479.
Nakamura, T., M. Yamamori, H. Hirano, and S. Hidaka. 1993. The WAXY (Wx) proteins of maize, rice and barley. Phytochemistry 33:749-753.
Nakamura, Y., and K. Yuki. 1992. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Sci. 82:15-20.
O’Farrell, P.Z., H.M. Goodman, K. O’Farrell. 1977. High resolution two-dimensional electrophoresis od basic as well as acidic proteins. Cell 12:1133-1142.
Ogawa, M., T. Kumamaru, H. Satoh, N. Iwata, T. Omura, Z. Kasai, and K. Tanaka. 1987. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol. 28:1517-1527.
Oparka, K.J., and N. Harris. 1982. Rice protein-body formation:all types are initiated by dilation of the endoplasmic reticulum. Planta 154:184-188.
Oura, Y., K. Yamada, K. Shiratake, and S. Yamaki. 2000. Purification and characterization of a NAD+-dependent sorbitol dehydrogenase from Japanese pear fruit. Phytochemistry 54:567-572.
Padhye, V.W., and D.K. Salunkhe. 1979. Extraction and characterization of rice proteins. Cereal Chem. 56:389-393.
Pomerening, J.R., L. Valente, T.G. Kinzy, and T.W. Jacobs. 2003. Mutation of a conserved CDK site converts a metazoan Elongation Factor 1Bbeta subunit into a replacement for yeast eEF1Balpha. Mol Gen. Genom. 269:776-788.
Rabilloud, T. 1990. Mechanisms of protein silver staining in polyacrylamide gel: A 10-year synthysis. Electrophoresis 11:785-794.
Rakwal, R., and S. Komatsu. 2000. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21:2492-2500.
Ramachandran, C., and V. Raghavan. 1989. Changes in nuclear DNA content of endosperm cells during grain development in rice (Oryza sativa L.). Ann. Bot. 64:459-468.
Ramakrishna, W., Z. Deng, C.K. Ding, A.K. Handa, and R.H. Ozminkowski. 2003. A novel small heat shock protein gene, vis1, contributes to pectin depolymerization and Juice viscosity in tomato fruit. Plant Physiol. 131:725-735.
Resurreccion, A.P., X. Li, T.W. Okita, and B.O. Juliano. 1993. Characterization of poorly digested protein of cooked rice protein bodies. Cereal Chem. 70:101-104.
Robert, L.S., C. Nozzolillo, and I. Altosaar. 1985. Homology between rice glutelin and oat 12S globulin. Biochem. Biophys. Acta 829:19-26.
Sadimantara, G.R., T. Abe, J. Suzuki, H. Hirano, and T. Sasahara 1996. Characterization and partial amino acid sequence of a high molecular weight protein from rice seed endosperm: homology to pyruvate orthophosphate dikinase. J. Plant Physiol. 149:285-289.
Salekdeh, G.H., J. Siopongco, L.J. Wade, B. Ghareyazie, and J. Bennett. 2002. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131-1145.
Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sano, Y. 1984. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68:467-473.
Sarker, S.C., M. Ogawa, M. Takahashi, and K. Asada. 1986. The processing of a 57-kDa precursor peptide to subunits of rice glutelin. Plant Cell Physiol. 27:1579-1586.
Schaeffer, G.W., and F.T. Sharpe. 1997. Electrophoretic profiles and amino acid composition of rice endosperm proteins of a mutant with enhanced lysine and total protein after backcrosses for germplasm improvements. Theor. Appl. Genet. 95:230-235.
Shewry, P.R., J.A. Napier, and A.S. Tatham. 1995. Seed storage proteins: structures and biosynthesis. Plant Cell 7:945-956.
Shotwell, M.A., and B.A. Larkins. 1989. The biochemistry and molecular biology of seed storage proteins. p:296-345. In A. Marcus. et al. (eds.) The Biochemistry of Plants:a Comprehensive Treatise. Vol. 15.
Souza, S.R., E.M.L.M. Stark, and M.S. Fernandes. 1993. Effects of supplemental -nitrogen on the quality of rice proteins. J. Plant Nutr. 16:1739-1751.
Takano, M., H. Kajiya-Kanegae, H. Funatsuki, and S. Kikuchi. 1998. Rice has two distinct classes of protein kinase genes related to SNF1of Saccharomyces cerevisiae, which are differently regulated in early seed development. Mol. Gen. Genet. 260:388-394.
Takamoto, Y., S.J. Coughlan, T.W. Okita, H. Satoh, M. Ogawa, and T. Kumamaru. 2002. The Rice Mutant esp2 Greatly Accumulates the Glutelin Precursor and Deletes the Protein Disulfide Isomerase. Plant Physiol. 128:1212-1222.
Tamaki, M., M. Ebata, T. Tashiro, and M. Ishikawa. 1989a. Physico-ecological studies on quality formation of rice kernel. ⅠEffects of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel. Jpn. J. Crop Sci. 58:653-658.
Tamaki, M., M. Ebata, T. Tashiro, and M. Ishikawa. 1989b. Physico-ecological studies on quality formation of rice kernel. Ⅱ. Changes in quality of rice kernel during grain development. Jpn. J. Crop Sci. 58:659-663
Tamaki, M., M. Ebata, T. Tashiro, and M. Ishikawa. 1989c. Physico-ecological studies on quality formation of rice kernel. Ⅲ. Effects of ripening stage and some ripening condition on free amino acids in milled rice kernel and in the exterior of cooked rice. Jpn. J. Crop Sci. 58:695-703.
Tanaka, K., Z. Kasai, and M. Ogawa. 1995. p.97-118. In K. Matsuo et al. (eds.) Physiology of ripening. Science of the Rice Plant Volume Two. Physiology. Food and Agriculture Policy Research Center, Tokyo.
Tanaka, K., T. Sugimoto, M. Ogawa, and Z. Kasai. 1980. Isolation and characterization of two types of protein bodies in the rice endosperm. Agric. Biol. Chem. 44:1633-1639.
Tashiro, T., and I.F. Wardlaw. 1991a. The effect of high temperature on kernel dimensions and type and occurrence of kernel damage in rice. Aust. J. Agri. Res. 42:485-496.
Tashiro, T. and I.F. Wardlaw. 1991b. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Aust. J. Plant Physiol. 18:259-265.
Tetlow, I.J., R. Wait, Z. Lu, R. Akkasaeng, C.G. Bowsher, S. Esposito, B. Kosar-Hashemi, M.K. Morell, and M.J. Emes. 2004. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16:694-708.
Tsay, Y.G., Y.H. Wang, C.M. Chiu, B.J. Shen, and S.C. Lee. 2000. A strategy for identicfication and quantitation of phosphopetides by liquid chromatography/ tandem mass spectrometry. Anal. Biochem. 287:55-64.
Tung, C.W., C.Y. Wang, H.S. Lur, and C. Chu. 1997. Grain storage proteins in Taiwan rice cultivars: quantifying and PR-HPLC pattern analysis of glutelins and prolamins. Chinese Agron. J. 7:115-125.
Umemoto, T., and K. Terashima. 2002. Activity of granule-bound starch synthase is an important determinant of amylase content in rice endosperm. Func. Plant Biol. 29:1121-1124.
Umemoto, T., Y. Nakamura, and N. Ishikura. 1995. Activity of starch synthase and the amlyose content in rice endosperm. Phytochemistry 40:1613-1616.
Villareal, C.P., D.L. Cruz, N.M, and B.O. Juliano. 1994. Rice amylose analysis by near-infrared transmittance spectroscopy. Cereal Chem. 71:292-296.
Walburg, G., and B.A. Larkins. 1983. Oat seed globulin. Plant Physiol.72 : 161-165.
Webb, B.D. 1985. Criteria of rice quality in the United States. p.403-427. In B. O. Juliano (ed.) Rice:Chemistry and Technology,. American Assoc. of Cereal Chemists. USA.
Wen, T.N., and D.S. Luthe. 1985. Biochemical characterization of rice glutelin. Plant Physiol. 78:172-177.
Woo, S.H., M. Fukuda, N. Islam, M. Takaoka, H. Kawasaki, and H. Hirano. 2002. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis. Electrophoresis 23:647-654.
Fukuda, M., N. Islam, S.H. Woo, A. Yamagishi, M. Takaoka, and H. Hirano. 2003. Assessing matrix assisted laser desorption/ ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice. Electrophoresis 24:1319-1329.
Yamagata, H., T. Sugimoto, K. Tanaka, and Z. Kasai. 1982. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol. 70:1094-1100.
Yamagata, H., K. Tanaka, and Z. Kasai. 1982. Evidence for a precursor form of rice glutelin subunits. Agric. Biol. Chem. 46:321-322.
Yao, M.H., H.S. Lur, and C. Chu. 1999. Analysis of diurnal temperature range in Taiwan area. J. Agri. Assoc. China. 188:32-45.
Yeh, C.H., Y.M. Chen, and C.Y. Lin. 2002. Functional Regions of Rice Heat Shock Protein, Oshsp16.9, Required for Conferring Thermotolerance in Escherichia coli. Plant Physiol. 168:661-668.
Zakaria, S., T. Matsuda, S. Tajima, and Y. Nitta. 2002. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 5:160-168.
Zhao, W.M., J.A. Gatehouse, and D. Boulter. 1983. The purification and partial amino acid sequence of a polypeptide from the glutelin fraction of rice grains:homology to pea legumin. FEBS Lett. 162:96-102.

第二章參考文獻
小葉田亨、安原宏宣。 2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔