跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃朝宗
研究生(外文):Chao-Tsung Huang
論文名稱:針對離散小波轉換以及移動補償式時間濾波之積體電路架構設計與分析
論文名稱(外文):VLSI Architecture and Analysis of Discrete Wavelet Transform and Motion-Compensated Temporal Filtering
指導教授:陳良基陳良基引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:194
中文關鍵詞:超大型積體電路架構移動補償式時間濾波離散小波轉換視訊影像壓縮
外文關鍵詞:motion-compensated temporal filteringVLSI architecturediscrete wavelet transformvideo and image compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
離散小波轉換已為靜態影像以及動態視訊壓縮技術帶來革命性的進展,在本論文中,針對離散小波轉換的積體電路設計以及記憶分析,依三個不同的維度分為三個部份來討論,依次為:一維離散小波轉換、二維離散小波轉換以及從時間軸進行離散小波轉換的移動補償式時間濾波。

第一章將介紹離散小波轉換在視訊壓縮演算法上扮演的角色,以及硬體實現上的考量。接著第一部份由第二章介紹一維離散小波轉換演算法和既有硬體架構開始,在第三章裡翻轉式結構將被提出,其可加快提昇式結構的工作頻率,第四章將提出一種全新的設計類別,可提供最少的邏輯閘個數。從第五章開始進入第二部份—二維離散小波轉換,首先是分析不同的影像輸入方法造成效能的差異,第六章將提出可適用於任意離散小波轉換硬體模組的一般型二維條狀式架構,並可最小化內部記憶體,第七章更進一步討論條狀式內部記憶體的實現方法,藉由所提出的多重提昇結構可以減少內部記憶體的面積大小以及存取功率,第八章為討論邊界延伸問題以及形狀適應離散小波轉換的硬體架構。第三部份—移動補償式時間濾波—由第九章開始,在介紹完該演算法後,接著為一階移動補償式時間濾波的記憶體分析以及所提出的資料共享機制,第十章進一步討論多階移動補償式時間濾波的系統分析,最後一個具高度彈性的系統架構將被提出。本論文的主要貢獻與未來方向於第十一章中做結論。
Discrete Wavelet Transform (DWT) has led the revolution of block-based image coding and close-loop video coding systems. In this dissertation, VLSI architectures and memory analysis of DWT in three dimensions are discussed in three different parts: One-Dimensional (1-D) DWT, Two-Dimensional (2-D) DWT, and Motion-Compensated Temporal Filtering (MCTF) that performs DWT in the temporal direction. Because 1-D DWT, 2-D DWT, and MCTF are pixel-level, framelevel, and group-of-picture-level operations, the design levels target at processing element, module, and system, respectively.

The implementation method of 1-D DWT is highly related to the algorithm view. In Part I of this dissertation, many different algorithm views for DWT are surveyed first: two-channel filter bank, polyphase decomposition, lifting scheme, and B-spline factorization. The previous 1-D DWT architectures can be classified into convolution- and lifting-based. Second, we propose a flipping structure to reduce the critical path of lifting-based DWT architecture without any hardware overhead. The lifting-based architectures are usually adopted because of its fewer computation complexity and in-place implementation. However, the critical path is potentially long owing to the serial connection of triangular matrices. The flipping structure multiplies the inverses on the timing accumulation path for efficiently reducing the critical path, instead of the conventional pipelining technique that introduces many registers. The case studies of JPEG 2000 (9,7) filter and the linear (6,10) filter demonstrate the efficiency of flipping structure. Third, a new category of DWT implementation based on B-spline factorization is proposed, which can use fewer multipliers. For Daubechies wavelets, it can guarantee to reduce about one half of multiplies compared to convolution-based architectures. However, the lifting scheme cannot reduce the computation complexity for even linear DWT filters. By case studies of the (6,10), (10,18), and (9,7) filters, the proposed B-spline-based architecture shows the superior performance in terms of logic gate count.

The 2-D DWT belongs to frame-based computations, so the performance of hardware implementation is dominated by external memory bandwidth and internal memory size. In Part II of this dissertation, a detailed survey for different scan methods is first given and classified into five categories. An overlapped stripe-based scan is proposed to provide a better trade-off for memory requirement. Second, generic line-based 2-D DWT architectures are proposed, which can adopt any kind of 1-D DWT modules. For 1-level 2-D line-based architecture, the line buffer is separated into data buffer and temporal buffer. We propose a data flow for data buffer and a mapping method for temporal buffer, which can minimize the line buffer size. Two multi-level 2-D DWT line-based architectures are also proposed, which can minimize the external memory access, with different hardware utilizations. Third, we propose a memory-efficient implementation for line-based 2-D DWT, which is called multiple-lifting scheme. The implementation issues of temporal buffer are first discussed. Then, the proposed multiple-lifting scheme provides a new implementation method for temporal buffer. It can reduce the temporal buffer access frequency to replace the two-port SRAM by single-port SRAM. The reduction of access frequency also decreases the power consumption of temporal buffer proportionally. By evaluating hardware designs for the (9,7) filter with Artisan 0.18um cell library and RAM compiler, the efficiency of area and power reduction is proven. Fourth, an efficient VLSI implementation for 2-D Shape-Adaptive DWT (SA-DWT) is proposed. The SA-DWT requires the capability to process the boundary extension for very short signal segments. It is proposed to be implemented by use of stage-based boundary extension strategy
and shape-adaptive boundary handling unit. The SA-DWT with the JPEG 2000 lossy (9,7) filter and the MPEG-4 VTC (9,3) filter are implemented to prove the efficiency. Furthermore, the SA-DWT implementation with (9,7) filter is fabricated with core area 1.68x1.68mm2 in TSMC 0.25um process. This chip has real-time processing capability of 1-level 2-D SA-DWT for HDTV1080p 30fps sequences when working at 50MHz.

MCTF is to perform DWT in the temporal direction with Motion Compensation (MC). MCTF has become the core technology in interframe wavelet video coding and the next generation video coding standard MPEG SVC. In Part III of this dissertation, the first research work on VLSI architecture and memory analysis of MCTF are presented. First, memory issues of one-level MCTF are discussed. The 5/3 MCTF consists of prediction and update stages. The former is analyzed in terms of macroblock- and frame-level data reuse schemes separately. After reviewing previous macroblock-level reuse schemes, we propose a new Level C+ scheme to provide a good trade-off between Level C and D schemes. Based on the open-loop prediction nature, we propose three frame-level data reuse schemes: Double Reference Frames ME, Double Current Frames ME, and modified Double Current Frames ME. The analysis of 5/3 MCTF is based on
the combination of prediction and update stages, which includes external memory bandwidth and storage size. Second, system issues of multi-level MCTF are discussed, including computation complexity, external memory bandwidth and storage size, and coding delay. The computation complexities are very similar for different MCTF configurations, but other three system issues are quite different. They depend on the adopted macroblock- and frame-level reuse scheme, decomposition level, inter- or intra-coded lowpass frames, and 5/3 or 1/3 MCTF. Based on simulation results, the impact of the latter three parameters on coding performance is evaluated. Accordingly, a flexible and efficient system architecture is proposed for multi-level MCTF. It can adapt the temporal prediction structures to any-level 5/3 MCTF, 1/3 MCTF, or Hierarchial B-frames, and even the close-loop MCP with two reference frames.

In summary, this dissertation presents a fast lifting-based architecture, named flipping structure, and a new design category based on B-spline factorization that can provide the smallest gate count for 1-D DWT processing element design. For 2-D DWT, a generic line-based architecture is proposed to minimize the on-chip memory and to be capable of adopting any kind of DWT modules. Furthermore, a memory-efficient implementation for temporal buffer, called multiple-lifting scheme, is presented to reduce the memory area and access power efficiently. Besides, the boundary extension of SA-DWT is addressed by proposed stage-based boundary handling units. As for MCTF, system-level implementation issues are considered. The block-level and frame-level data reuse schemes are both discussed for one-level MCTF. According to analysis results, a flexible and efficient system architecture is proposed for multi-level MCTF, which can support many configurations of MCTF systems.
Abstract xix
1 Introduction 1
1.1 Trends in Image Coding Algorithm . . . . . . . . . . . . . . . . . 1
1.2 Trends in Video Coding Algorithm . . . . . . . . . . . . . . . . . 4
1.3 Memory Management of Multimedia System . . . . . . . . . . . 6
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . 8
I One-Dimensional Discrete Wavelet Transform 11
2 Survey of 1-D DWT Algorithm and Architecture 13
2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Continuous Wavelet to Discrete Wavelet . . . . . . . . . . 14
2.1.2 Polyphase Decomposition . . . . . . . . . . . . . . . . . 17
2.1.3 Lifting Scheme . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 B-spline Formulation . . . . . . . . . . . . . . . . . . . . 20
2.2 Conventional 1-D DWT Architectures . . . . . . . . . . . . . . . 21
2.2.1 Convolution-based Architectures . . . . . . . . . . . . . . 22
2.2.2 Lifting-based Architectures . . . . . . . . . . . . . . . . 23
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Flipping Structure for Lifting-based DWT Hardware Implementation 29
3.1 Flipping Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Precision Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 JPEG 2000 Default (9,7) Filter . . . . . . . . . . . . . . . 35
3.3.2 Integer (9,7) Filter . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Linear (6,10) Filter . . . . . . . . . . . . . . . . . . . . . 42
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 B-spline Factorized DWT/IDWT Architecture 47
4.1 Proposed B-spline Factorized Architecture . . . . . . . . . . . . . 47
4.1.1 B-spline Factorized Architectures for DWT and IDWT . . 47
4.1.2 Implementation Methods of the B-spline Part . . . . . . . 49
4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Multipliers and Adders . . . . . . . . . . . . . . . . . . . 51
4.2.2 Critical Path and Registers . . . . . . . . . . . . . . . . . 53
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 DWT with JPEG 2000 Default (9,7) Filter . . . . . . . . . 55
4.3.2 DWT with the Linear (6,10) Filter . . . . . . . . . . . . . 58
4.3.3 DWT with the Linear (10,18) Filter . . . . . . . . . . . . 61
4.3.4 IDWT with the Linear (10,18) Filter . . . . . . . . . . . . 62
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
II Two-Dimensional Discrete Wavelet Transform 69
5 Analysis of 2-D DWT Hardware Architectures 71
5.1 Introduction to 2-D DWT . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Classification of Frame Memory Scan Methods . . . . . . . . . . 73
5.2.1 Direct Scan . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Line-based Scan . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Non-overlapped and Overlapped Block-based Scans . . . 76
5.2.4 Non-overlapped Stripe-based Scan . . . . . . . . . . . . . 79
5.2.5 Proposed Overlapped Stripe-based Scan Method . . . . . 79
5.3 Comparison of Scan Methods for 1-level 2-D DWT Architectures 80
5.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Generic Line-based 2-D DWT Architecture 83
6.1 Proposed 1-level Line-based Architecture . . . . . . . . . . . . . 84
6.1.1 Data Flow for Data Buffer of Size 1.5N . . . . . . . . . . 87
6.1.2 Complete Data Flow for Data Buffer of Size (1+(1/2)k)N 89
6.1.3 Numerical Analysis of Data Buffer Size . . . . . . . . . . 91
6.1.4 Integration of Lifting-based DWT Module . . . . . . . . . 93
6.2 Proposed Multi-level Line-based Architectures . . . . . . . . . . 94
6.2.1 Adopting Two 1-D DWT Modules (2DWTM) . . . . . . . 94
6.2.2 Adopting Three 1-D DWT Modules (3DWTM) . . . . . . 95
6.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 JPEG 2000 Default Lossy (9,7) Filter . . . . . . . . . . . 99
6.3.3 JPEG 2000 Default Lossless (5,3) Filter . . . . . . . . . . 100
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Multiple-Lifting Scheme: Memory-Efficient Implementation for Line-based 2-D DWT 103
7.1 Implementation Issues of Temporal Buffer for Line-based 2-D DWT 104
7.1.1 Lifting-based DWT Module . . . . . . . . . . . . . . . . 104
7.1.2 Convolution-based DWT Module . . . . . . . . . . . . . 105
7.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Proposed Multiple-Lifting Scheme . . . . . . . . . . . . . . . . . 107
7.2.1 Reducing Average Memory Bandwidth using Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.2 Proposed Two-lifting Scheme . . . . . . . . . . . . . . . 109
7.2.3 Proposed N-lifting Scheme . . . . . . . . . . . . . . . . . 111
7.3 Proposed M-Scan for Multiple-lifting Scheme . . . . . . . . . . . 111
7.3.1 Proposed M-Scan for Two-lifting Scheme . . . . . . . . . 112
7.3.2 Proposed M-Scan for N-lifting Scheme . . . . . . . . . . 113
7.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8 VLSI Architecture for Lifting-based Shape-Adaptive DWT with Odd-Symmetric Filters 117
8.1 Background Introduction . . . . . . . . . . . . . . . . . . . . . . 118
8.2 SA-DWT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Previous Boundary Extension Handling Technique for Convolution-based DWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.4 Lifting Scheme of Odd-Symmetric Filters . . . . . . . . . . . . . 125
8.5 Proposed VLSI Architecture Design Method for Lifting-based Odd-Symmetric SA-DWT . . . . . . . . . . . . . . . . . . . . . . . . 126
8.5.1 Stage-based Boundary Extension Strategy . . . . . . . . . 127
8.5.2 Shape-Adaptive Boundary Handling Unit . . . . . . . . . 127
8.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.6.1 JPEG 2000 Default (9,7) Filter . . . . . . . . . . . . . . . 129
8.6.2 MPEG-4 VTC (9,3) Filter . . . . . . . . . . . . . . . . . 133
8.7 Chip Implementation for SA-DWT with (9,7) Filter . . . . . . . . 137
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
III Motion-Compensated Temporal Filtering 141
9 Memory Analysis for One-Level MCTF 143
9.1 Introduction to Motion-Compensated Temporal Filtering . . . . . 144
9.2 Macroblock-level Data Reuse for Motion Estimation . . . . . . . 146
9.2.1 Conventional Data Reuse Schemes for FSBMA . . . . . . 148
9.2.2 Proposed Level C+ Scheme for FSBMA . . . . . . . . . . 149
9.3 Memory Analysis for Prediction Stage . . . . . . . . . . . . . . . 150
9.3.1 Redundancy Access for MC in MCTF . . . . . . . . . . . 151
9.3.2 Direct Implementation of Prediction Stage . . . . . . . . . 153
9.3.3 Proposed Double Reference Frames ME . . . . . . . . . . 154
9.3.4 Proposed Double Current Frames ME . . . . . . . . . . . 154
9.3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4 Memory Analysis for One-level MCTF . . . . . . . . . . . . . . 156
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10 Analysis and Architecture for Multi-level MCTF 161
10.1 Introduction to Multi-level MCTF . . . . . . . . . . . . . . . . . 161
10.1.1 Decomposition Level . . . . . . . . . . . . . . . . . . . . 162
10.1.2 Inter- or Intra-coding for Lowpass Frames . . . . . . . . . 162
10.1.3 Update Stage . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Analysis of Multi-level MCTF . . . . . . . . . . . . . . . . . . . 163
10.2.1 Computation Complexity and External Memory Access . 163
10.2.2 External Memory Storage . . . . . . . . . . . . . . . . . 164
10.2.3 Coding Delay . . . . . . . . . . . . . . . . . . . . . . . . 165
10.2.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.3 Proposed System Architecture for Multi-level MCTF . . . . . . . 167
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11 Conclusion 177
11.1 Principal Contributions . . . . . . . . . . . . . . . . . . . . . . . 177
11.1.1 One-Dimensional Discrete Wavelet Transform . . . . . . 177
11.1.2 Two-Dimensional Discrete Wavelet Transform . . . . . . 179
11.1.3 Motion-Compensated Temporal Filtering . . . . . . . . . 181
11.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.2.1 Dual-Mode DWT/IDWT for JPEG 2000 Codec . . . . . . 182
11.2.2 Lossy Embedded Compression for Open-loop MCTF . . . 183
11.2.3 Flexible and High Quality SVC Single-Chip Encoder . . . 183
11.2.4 Power-aware SVC Single-Chip Decoder . . . . . . . . . . 183
[1] Information Technology - Digital Compression and Coding of Continuous-Tone Still Images, ISO/IEC 10918-1 and ITU Rec. T.81 Std., 1994.
[2] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–3463, Dec. 1993.
[3] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.
[4] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, July 2000.
[5] JPEG 2000 Image Coding System, ISO/IEC FDIS15444-1, 2000.
[6] K. Varma and A. Bell, “JPEG2000 - choices and tradeoffs for encoders,” IEEE Signal Processing Magazine, pp. 70–75, Nov. 2004.
[7] Shih-Ta Hsiang, “Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling,” in IEEE Data Compression Conference, Mar. 2001, pp. 83–92.
[8] Information Technology - Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5Mbit/s - Part 2: Video, ISO/IEC 11172-2, 1993.
[9] Information Technology - Generic Coding of Moving Pictures and Associated Audio Information: Video, ISO/IEC 13818-2 and ITU-T Recommendation H.262, 1996.
[10] Information Technology - Coding of Audio-Visual Objects - Part 2: Visual, ISO/IEC 14496-2, 1999.
[11] Joint Video Team, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, 2003.
[12] J.-R. Ohm, “Advanced packet-video coding based on layered VQ and SBC techniques,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, no. 3, pp. 208–221, June 2002.
[13] A. Secker and D. Taubman, “Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting,” in Proc. IEEE International Conference on Image Processing, 2001, pp. 1029–1032.
[14] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional lifting schemes for motion compensated video compression,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 1793–1796.
[15] D. Taubman, “Successive refinement of video: fundamental issues, past efforts and new directions,” in International Symposium on Visual Communications and Image Processing, 2003, pp. 791–805.
[16] ISO/IEC JTC1, “Call for proposals on scalable video coding technology,” ISO/IEC JTC1/WG11 Doc. N5958, Oct. 2003.
[17] “Scalable Video Coding and IPMP make big strides,” ISO/IEC JTC1/WG11 Doc. N6303, Mar. 2004.
[18] J. Reichel, H. Schwarz, and M. Wien, “Working Draft 1.0 of 14496-10:200x/AMD1 Scalable Video Coding,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. N6901, Jan. 2005.
[19] H. Schwarz, D. Marpe, and T.Wiegand, “Scalable extension of H.264/AVC,” ISO/IEC JTC1/WG11 Doc. M10569/S03, Mar. 2004.
[20] H. Schwarz, D. Marpe, and T. Wiegand, “MCTF and scalability extension of H.264/AVC,” in Proc. Picture Coding Symposium, 2004.
[21] D. Keitel-Schulz and N. Wehn, “Embedded DRAM development: Technology, physical design, and application issues,” IEEE Design and Test of Computers, vol. 18, no. 3, pp. 7–15, 2001.
[22] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappele, Custom Memory Management Methodology: Exploration of Memory Organization for Embedded Multimedia System Design, Norwell, MA: Kluwer, 1998.
[23] P.H.N. de With, P.H. Frencken, and M. Schaar-Mitrea, “An MPEG decoder with embedded compression for memory reduction,” IEEE Transactions on Consumer Electronics, vol. 44, no. 3, pp. 545–555, Aug. 1998.
[24] S. Peng and M. Balakrishnan, “DTV and low-cost video decoder,” in Proceedings of the IEEE Industrial Electronics Society, 1999, vol. 2, pp. 744–749.
[25] M. van der Schaar and P.H.N. de With, “Near-lossless complexity-scalable embedded compression algorithm for cost reduction in DTV receivers,” IEEE Transactions on Consumer Electronics, vol. 46, no. 4, pp. 923–933, Nov. 2000.
[26] R. P. Llopis, R. Sethuraman, C. A. Pinto, S. Peters, S. Maul, and M. Oosterhuis, “A low-cost and low-power multi-standard video encoder,” in First IEEE/ACM/IFIP International Conference on Hardware/Software Co-design and System Synthesis, 2003, pp. 97–102.
[27] D. Tzovaras, M. G. Strintzis, and H. Sahinolou, “Evaluation of multiresolution blocking matching techniques for motion and disparity estimation,” Signal Processing: Image Communication, vol. 6, no. 1, pp. 56–67, Mar. 1994.
[28] Mei-Yun Hsu, “Scalable module-based architecture for MPEG-4 BMA motion estimation,” M.S. thesis, National Taiwan Univ., June 2000.
[29] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture,” IEEE Trans. CSVT, vol. 12, no. 1, pp. 61–72, Jan. 2002.
[30] I. Daubechies, “Orthonormal bases of compactly support wavelets,” Communications on Pure and Applied Mathematics, vol. 41, pp. 909–996, Nov. 1988.
[31] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, July 1989. 189
[32] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp. 205–220, Apr. 1992.
[33] JPEG 2000 Image Coding System: Motion JPEG 2000, ISO/IEC FDIS15444-3, 2002.
[34] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.
[35] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.
[36] W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal wavelets,” Applied and Computaional Harmonic Analysis, vol. 3, no. 15, pp. 186–200, 1996.
[37] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” The Journal of Fourier Analysis and Applications, vol. 4, pp. 247–269, 1998.
[38] J. Reichel, “On the arithmetic and bandwidth complexity of the lifting scheme,” in Proc. IEEE International Conference on Image Processing, 2001, pp. 198–201.
[39] M. Unser and T. Blu, “Wavelet theory demystified,” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 470–483, Feb. 2003.
[40] K. K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet transforms,” IEEE Transactions on Very Large Scale Integration Systems, vol. 1, no. 2, pp. 191–202, June 1993.
[41] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete and continuous wavelet transforms: From single chip implementations to mappings on SIMD array computers,” IEEE Transactions on Signal Processing, vol. 43, no. 3, pp. 759–771, Mar. 1995.
[42] M. Vishwanath, R. M. Owens, and M. J. Irwin, “VLSI architectures for the discrete wavelet transform,” IEEE Transactions on Circuis and Systems-II: Analog and digital signal processing, vol. 42, no. 5, pp. 305–316, May 1995.
[43] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architectures for wavelet transforms: A survey,” Journal of VLSI Signal Processing, vol. 14, pp. 171–192, 1996.
[44] J.-M. Jou, Y.-H. Shiau, and C.-C. Liu, “Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme,” in IEEE International Symposium on Circuits and Systems, 2001, vol. 2, pp. 529–532.
[45] W. Jiang and A. Ortega, “Lifting factorization-based discrete wavelet transform architecture design,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 5, pp. 651–657, May 2001.
[46] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Liang-Gee Chen, “Lifting based discrete wavelet transform architecture for JPEG2000,” in IEEE International Symposium on Circuits and Systems, 2001, pp. 445–448.
[47] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Transactions on Signal Processing, vol. 50, no. 4, pp. 966–977, Apr. 2002.
[48] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, New York: Wiley, 1999.
[49] Y.-H. Shiau, J. M. Jou, and C.-C. Liu, “Efficient architectures for the biorthogonal wavelet transform by filter bank and lifting scheme,” IEICE Transactions on Information and Systems, vol. E87-D, no. 7, pp. 1867–1877, July 2004.
[50] David B. H. Tay, “A class of lifting based integer wavelet transform,” in Proc. IEEE International Conference on Image Processing, 2001, vol. 1, pp. 602–605.
[51] Z. Guangjun, C. Lizhi, and C. Huowang, “A simple 9/7-tap wavelet filter based on lifting scheme,” in Proc. IEEE International Conference on Image Processing, 2001, vol. 2, pp. 249–252.
[52] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “VLSI architecture for forward discrete wavelet transform based on B-spline factorization,” Journal of VLSI Signal Processing, 2005.
[53] T. Q. Nguyen and P. P. Vaidyanathan, “Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 5, pp. 676–690, May 1989.
[54] M. J. Tsai, J. D. Villasenor, and F. Chen, “Stack-run image coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 5, pp. 519–521, Oct. 1996.
[55] N. Polyak and W. A. Pearlman, “A new flexible bi-orthogonal filter design for multiresolution filterbanks with application to image compression,” IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2279–2288, Aug. 2000.
[56] P.-C. Wu and L.-G. Chen, “An efficient architecture for two-dimensional discrete wavelet transform,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 536–545, Apr. 2001.
[57] M. Weeks and M. Bayoumi, “Discrete wavelet transform: Architectures, design and performance issues,” Journal of VLSI Signal Processing Systems, vol. 35, no. 2, pp. 155–178, Sept. 2003.
[58] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, and C. E. Goutis, “Evaluation of design alternatives for the 2-D-discrete wavelet transform,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 12, pp. 1246–1262, Dec. 2001.
[59] P. E. Landman and J. M. Rabaey, “Architectural power analysis: The dual bit type method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3, no. 2, pp. 173–187, June 1995.
[60] P.-C. Tseng, C.-T. Huang, and L.-G. Chen, “Generic RAM-based architecture for two-dimensional discrete wavelet transform with line-based method,” in Asia-Pacific Conference on Circuits and Systems, 2002, pp. 363–366.
[61] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet image compression,” IEEE Transactions on Image processing, vol. 9, no. 3, pp. 378–389, Mar. 2000.
[62] Y.-H. Shiau and J. M. Jou, “A high-performance tree-block pipelining architecture for separate 2-D inverse discrete wavelet transform,” IEICE Transactions on Information and Systems, vol. E86-D, no. 10, pp. 1966–1975, Oct. 2003.
[63] H. Yamauchi et al., “Image processor capable of block-noise-free JPEG2000 compression with 30frames/s for digital camera applications,” in IEEE International Solid-State Circuits Conference, 2003, pp. 46–47.
[64] M.-Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal data transfer and buffering schemes for JPEG 2000 encoder,” in IEEE Workshop on Signal Processing Systems, 2003, pp. 177–182.
[65] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Generic RAM-based architectures for two-dimensional discrete wavelet transform with line-based method,” IEEE Transactions on Circuits and Systems for Video Technology, 2005.
[66] C. Diou, L. Torres, and M. Robert, “A wavelet core for video processing,” in Proc. of International Conference on Image Processing, 2000, pp. 395–398.
[67] P.-C. Tseng, C.-T. Huang, and L.-G. Chen, “VLSI implementation of shape-adaptive discrete wavelet transform,” in Proc. of SPIE International Conference on Visual Communications and Image Processing, 2002, pp. 655–666.
[68] M. Vishwanath, “The recursive pyramid algorithm for the discrete wavelet transform,” IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 673–677, Mar. 1994.
[69] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “VLSI architecture for lifting-based shape-adaptive discrete wavelet transform with odd-symmetric filters,” Journal of VLSI Signal Processing Systems, vol. 40, pp. 175–188, 2005.
[70] S. Li and W. Li, “Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding,” IEEE Transactions on Circuits and System for Video Technology, vol. 10, no. 5, pp. 725–743, Aug. 2000.
[71] C. Chakrabarti, “A DWT-based encoder architecture for symmetrically extended images,” in IEEE International Symposium on Circuits and Systems, 1999, vol. 4, pp. 123–126.
[72] K. Seth and S. Srinivasan, “VLSI implementation of 2-D DWT/IDWT cores using 9/7-tap filter banks based on the non-expansive symmetric extension scheme,” in 15th International Conference on VLSI Design, 2002, pp. 435–440.
[73] M. Ferretti and D. Rizzo, “Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction,” IEEE Transactions on Signal Processing, vol. 48, no. 5, pp. 1365–1378, May 2000.
[74] H. Liao, M. K. Mandal, and B. F. Cockburn, “Novel architectures for the lifting-based discrete wavelet transform,” in IEEE Canadian Conference on Electrical and Computer Engineering, 2002, vol. 2, pp. 1020–1025.
[75] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI architectures of lifting-based discrete wavelet transform by systematic design method,” in IEEE International Symposium on Circuits and Systems, 2002, vol. 5, pp. 565–568.
[76] G. Pau, B. P.-Popescu, M. Schaar, and J. Vieron, “Delay-performance tradeoffs in motion-compensated scalable subband video compression,” in Advanced Concepts for Intelligent Vision Systems, 2004.
[77] ISO/IEC JTC1, “Scalable Video Model 3.0,” ISO/IEC JTC1/WG11 Doc. N6716, Oct. 2004.
[78] Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, H.264/AVC Reference Software JM9.0, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top