(34.239.176.198) 您好!臺灣時間:2021/04/23 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李尉彰
研究生(外文):Wei-Chang Li
論文名稱:適用於廣頻無線接取系統之互補式金氧半多頻帶射頻前端電路架構設計
論文名稱(外文):Multi-Band CMOS RF Front-End Circuit and Architecture Designs for BWA Systems
指導教授:汪重光汪重光引用關係
指導教授(外文):Chorng-Kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:99
中文關鍵詞:無線都會區域網路多頻帶接收機多頻帶射頻電路低雜訊放大器
外文關鍵詞:BWA802.16WMANWiMAXmulti-band receivermulti-band RF front-endmulti-band LNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
支援多頻帶且多系統的收發機由於具有多樣化的功能,提高使用上的便利性,在現今的無線傳輸應用上越來越受到注目。一般而言,實現多頻帶收發器的方式即是使用多組的射頻模組,然而,這種方法增加了電路的複雜度,也提高晶片面積及成本。為了解決這個問題,本論文提出適用於都會型區域網路系統多頻帶射頻接收機的架構,利用電路共用的概念,在2.4 GHz,3.5 GHz及5.2 GHz三個頻帶中,使用一組射頻電路做頻帶切換。
在說明這個多頻帶射頻電路前,先介紹低雜訊放大器和混波器的設計考量,及「輪廓圖方法」的設計步驟。根據這個流程,設計且使用CMOS 0.18μm製程實現一個適用於IEEE 802.11a系統的低雜訊放大器。這個低雜訊放大器所占面積為0.6x1.29 mm2,並在1.8 伏特的供給電壓下,消耗功率為5.8毫瓦。
接下來介紹本論文所提出的多頻帶射頻前端電路架構,包括一個多頻帶低雜訊放大器,及雙降頻摺疊式混波器。此多頻帶低雜訊放大器採用切換多端點電感的方式達成頻帶的選擇。除了簡省面積外,切換電感可使各頻帶皆有較佳的Q值。此三頻帶低雜訊放大器以CMOS 0.18μm製程實現,面積為1.2x1.5 mm2,不考慮緩衝級下,操作頻率在2.4 GHz時消耗14.6毫瓦,在3.5 GHz和5.2 GHz時消耗24.9毫瓦。
整個接收機射頻前端電路以CMOS 0.18μm製程實現,所占面積1.28x1.76 mm2,在1.8伏特電壓下,總消耗功率在2.4 GHz為25.3毫瓦,3.5 GHz為51.2毫瓦,在5.2 GHz為39.2毫瓦。
Multi-band and multi-standard transceivers attract more and more attention for their flexibility and functionality. Typically, the transceivers are realized by using two or more sets of RF blocks, which can handle the desired bands. However, this approach may increase chip area, the number of components, and the cost. A way to alleviate these problems is to use one set of RF block which can be tuned for multiple bands. In this thesis, a multi-band receiver architecture, operating at 2.4 GHz, 3.5 GHz and 5.2 GHz, is proposed for IEEE 802.16-2004 sub-11 GHz applications. The receiver RF front-end can achieve maximum hardware sharing while reducing chip area and cost.
Before going on the circuits of front-end, the design flows and considerations of RF blocks, i.e. LNA and mixer, are discussed. A technique called “Contour-plot methodology” has been published for LNA design, which can clearly provide designers the relations between design parameters and device size. The design flow of mixer is also presented using the contour-plot technique. Based on this methodology, a 5.2-GHz LNA with fully on-chip matching for WLAN systems is designed and implemented. Using a CMOS 0.18μm process, the LNA occupies an area of 0.6x1.29 mm2 and dissipates 5.8 mW from a 1.8 V power supply.
A tri-band LNA for the multi-band receiver RF front-end adopts a inductor-switching technique with a multi-tap inductor to select one of the three desired bands. Inductive switching is superior to capacitive switching since it can achieve better quality factors for each frequency band. Fabricated in CMOS 0.18μm technology, the tri-band LNA has an area of 1.2x1.5 mm2 and dissipates 14.6 mW in 2.4-GHz band and 24.9 mW in 3.5-GHz and 5.2-GHz band without buffer.
The proposed mixer uses a dual-conversion folded topology, which is composed of a single-balanced Gilbert-type mixer cascaded by two additional double-balanced PMOS switching pairs. System simulation shows that this topology can alleviate the noise and linearity requirements. The RF front-end occupies an area of 1.28x1.76 mm2 and dissipates 25.3 mW in 2.4 GHz, 51.2 mW in 3.5 GHz and 39.2 mW in 5.2 GHz, respectively.
Chapter 1 Introduction 1
1.1 Motivations . . .. . . . . . . . . . . . . 1
1.2 IEEE 802.16 WMAN System Overview . . . . . .2
1.2.1 IEEE 802.16 Evolution . . . . . . . . . . 2
1.2.2 Applications . . . . . . .. . . . . . . . 3
1.2.3 Spectrum Picture . . . . . . . . . . . . 4
1.3 Thesis Overview . . . . . . . . . . . . . . 5

Chapter 2 System Requirements for WMAN 7
2.1 Introduction. . . . . . . . . . . . . . . . 7
2.2 Design Parameters for Wireless Receivers . .7
2.2.1 Noise Figure . . . . . . . . . . . . . . .8
2.2.2 Sensitivity . . . . . . . . . . . . . . . 8
2.2.3 Linearity . . . . . . . . . . . . . . . . 9
2.2.4 Dynamic Range . . . . . . . . . . . . . .13
2.3 IEEE 802.16 Receiver Specifications . . . .13
2.3.1 Signal-to-Noise Ratio (SNR) . . . . . . .13
2.3.2 Linearity . . . . . . . . . . . . . . . .13
2.3.3 Phase Noise . . . . . . . . . . . . . . .15
2.3.4 Image-Rejection Ratio (IRR) . . . . . . .16
2.3.5 Summary . . . . . . . . . . . . . . . . .17

Chapter 3 Receiver Architectures 19
3.1 Introduction . . . . . . . . . . . . . . . 19
3.2 Receiver Architectures . . . . . . . . . . 20
3.2.1 Heterodyne Receiver . . . . . . . . . . 20
3.2.2 Homodyne Receiver . . . . . . . . . . . 21
3.2.3 Low-IF Receiver . . . . . . . . . . . . 22
3.2.4 Dual-Conversion Receiver . . . . . . . . 22
3.2.5 Comparison of Receiver Architectures . . 24
3.3 Proposed Multi-Band Receiver Architecture .24
3.4 Building Circuit Block Specifications . . .26

Chapter 4 Low-Noise Amplifier 29
4.1 Introduction . . . . . . . . . . . . . . . 29
4.2 LNA Topology . . . . . . . . . . . . . . . 29
4.3 Noise in MOSFET . . . . . . . . . . . . . 32
4.3.1 Classical Channel Thermal Noise . . . . 32
4.3.2 Non-Quasi Static Gate Noise . . . . . . 33
4.4 Contour-Plot Methodology for LNA Design . 34
4.4.1 Design Procedure . . . . . . . . . . . . 35
4.4.2 Technology Parameter Fitting . . . . . . 35
4.4.3 Design Considerations . . . . . . . . . 38
4.4.4 Design Equations . . . . . . . . . . . . 44
4.4.5 Contour Plotting . . . . . . . . . . . . 45
4.5 A 5-GHz LNA for WLAN . . . . . . . . . . . 47
4.5.1 LNA Schematic . . . . . . . . . . . . . 48
4.5.2 Design Equations . . . . . . . . . . . . 48
4.5.3 Contour Plotting . . . . . . . . . . . . 50
4.5.4 Simulation Results . . . . . . . . . . . 51
4.6 Experimental Results . . . . . . . . . . . 53
4.6.1 Test Plan . . . . . . . . . . . . . . . 53
4.6.2 Measurement Results . . . . . . . . . . 54
4.6.3 Analysis of Inconsistency . . . . . . . 54
4.6.4 Layout Revision . . . . . . . . . . . . 56

Chapter 5 Multi-Band RF Front-End Design for WMAN 61
5.1 Introduction . . . . . . . . . . . . . . . . . . 61
5.2 Mixer Design . . . . . . . . . . . . . . . . . . 61
5.2.1 Mixer Topology . . . . . . . . . . . . . . . . 61
5.2.2 Mixer Fundamentals . . . . . . . . . . . . . . 63
5.2.3 Design Equations . . . . . . . . . . . . . . . 64
5.2.4 Contour-plot Methodology for Mixer Design . . . 66
5.3 RF Front-End Design for WMAN . . . . . . . . . . 69
5.3.1 Multi-band LNA . . . . . . . . . . . . . . . . 70
5.3.2 Dual-conversion Folded Mixer . . . . . . . . . 76
5.4 Simulation Results . . . . . . . . . . . . . . . 79
5.4.1 Multi-band LNA . . . . . . . . . . . . . . . . 79
5.4.2 Dual-conversion Folded Mixer . . . . . . . . . 80
5.4.3 RF Front-end . . . . . . . . . . . . . . . . . 80
5.5 Experimental Results . . . . . . . . . . . . . . 82
5.5.1 Multi-band LNA . . . . . . . . . . . . . . . . 82

Chapter 6 Conclusion 91

Bibliography 93

Appendix A 97
[1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band. IEEE Std. 802.11, Sept. 1999.
[2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer Extension in the 2.4 GHz Band. IEEE Std. 802.11, Sept. 1999.
[3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: 4 Further Higher Data Rate Extension in the 2.4 GHz Band. IEEE Std. 802.11, June 2003.
[4] Wireless Medium Access Control and Physical Layer Specifications for Wireless Personal Area Networks. IEEE Std. 802.15, June 2002.
[5] Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE Std 802.16-2004, June 2004.
[6] Adlane Fellah, “WiMAX, NLOS and Broadband Wireless Access (Sub-11 GHz) Worldwide Market Analysis 2004-2008,” Maravedis Inc., Feb. 2004.
[7] Intel Corp., “Understanding Wi-Fi and WiMAX as Metro-Access Solutions,” 2004.
[8] Intel Corp., “Deploying License-Exempt WiMAX Solutions,” 2005.
[9] Adlane Fellah, “The WiMAX Spectrum Picture,” Maravedis Inc., Mar. 2005.
[10] B. Razavi, RF Microelectronics, Prentice-Hall, 1998.
[11] Richard van Nee and Ramjee Prasad, OFDM of Wireless Multimedia Communications, Artech House, 2000.
[12] T. Pollet, M. Van Bladel, and M. Moeneclaey, “BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise,” IEEE Trans. Comm., vol. 43, pp. 191-193, Feb./Mar./Apr. 1995.
[13] “Broadband Radio Access Networks (BRAN); HIPERMAN; Physical (PHY) layer,” ETSI, Sophia Antipolis, France, Nov. 2003.
[14] Jacques C. Rudell, Jia-Jiunn Ou, Thomas Byunghak Cho, George Chien, Francesco Brianti, Jaffrey A. Weldon, Paul R. Gray, “A 1.9-GHz Wide-band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 2071-2088, Dec. 1997.
[15] Choa-Shiun Wang, Wei-Chang Li and Chorng-Kuang Wang, “A Multi-band Multi-standard RF Front-end for IEEE 802.16a and IEEE 802.11a/b/g Applications,” in IEEE Int. Symp. on Circuits and Systems (ISCAS’05), May 2005 (accepted).
[16] Johan Janssens and Michiel Steyaert, CMOS Cellular Receiver Front-Ends, Kluwer Academic Publishers, 2002.
[17] Derek K. Shaeffer and Thomas H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol.32, no. 5, pp. 745-759, May 1997.
[18] Vinu Govind, Sidharth Dalmia and Madhavan Swaminathan, “Design of integrated low noise amplifiers (LNA) using embedded passives in organic substrates,” IEEE Trans. Advanced Packaging, vol. 27, no. 1, pp. 79-89, Feb. 2004.
[19] David J. Cassen and John R. Long, “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18-μm CMOS,” IEEE J. Solid State Circuit, vol. 38, no. 3, pp. 427-435, Mar. 2003.
[20] Barrie Gilbert, “A Precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid State Circuit, vol. 3, no. 4, pp. 365-373, Dec. 1968.
[21] Hooman Darabi and Asad A. Abidi, “Noise in RF CMOS Mixers: A Simple Physical Model,” IEEE Trans. Solid State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[22] Hossein Hashemi and Ali Hajimiri, “Concurrent Multiband Low-noise Amplifiers-Theory, Design, and Applications,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 288-301, Jan. 2002.
[23] Andrea Bevilacqua and Ali M. Niknejad, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers,” IEEE J. Solid State Circuit, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[24] Tommy K. K. Tsang and Mourad N. El-Gamal, “Dual-Band Sub-1 V CMOS LNA for 802.11a/b WLAN Applications,” in IEEE Int. Symp. on Circuits and Systems (ISCAS’03), May 2003, vol. 1, pp. 217-220.
[25] Masoud Zargari, Manolis Terrovitis, Steve Hung-Min Jen, Brian J. Kaczynski, MeeLan Lee, Michael P. Mack, Srenik S. Mehta, Sunetra Mendis, Keith Onodera, Hirad Samavati, William W. Si, Kalwant Singh, Ali Tabatabaei, David Weber, David K. Su and Bruce A. Wooley, “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN,” IEEE J. Solid State Circuit, vol. 39, no. 12, pp. 2239-2249, Dec. 2004.
[26] K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas, P. Merakos, I. Bouras, S. Bouras, S. Plevridis and N. Haralabidis, “A Dual-Band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18μm CMOS Transceiver for 802.11a/b/g Wireless LAN,” IEEE J. Solid State Circuit, vol. 39, no. 7, pp. 1180-1184, Jul. 2004.
[27] T. Ruhlicke, et al, “A Highly Integrated, Dual-Band, Multi-Mode Wireless LAN Transceiver,” IEEE Solid-State Circuit Conference, ESSCIRC ’03. Proceedings of the 29th European, pp. 229-232, Sept. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔