(3.230.173.249) 您好!臺灣時間:2021/04/21 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳泰元
研究生(外文):Tai-Yuan Chen
論文名稱:應用於光纖通訊系統之寬頻放大器設計與實作
論文名稱(外文):Design and Implementation of Broadband Amplifiers for Optical Communication System
指導教授:呂良鴻
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:72
中文關鍵詞:寬頻放大器可調式轉阻放大器矩陣分散式放大器互補式金氧半
外文關鍵詞:broadband amplifiertunable transimpedance amplifiermatrix distributed amplifiercmos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
網際網路與多媒體服務需求的增加(如數位電視)帶動了高速光纖通訊系統蓬勃的發展。具百億位元傳輸率的STM-64(OC-192)與具四百億位元傳輸率的STM-256(OC-768)為目前光纖通訊系統的主流。而近年來,不斷進步的深次微米互補式金氧半導體技術已具相當於高速III-V族元件的高頻特性而逐漸應用在高速電路設計。其低成本與高整合性的優點較高成本的III-V族更適於消費性電子的製造。本篇論文以0.18微米互補式金氧半導體技術實現了一個適用於百億位元傳輸率的可調式轉阻放大器及一個具45.6兆赫茲頻寬的矩陣分散式放大器。
本可調式轉阻放大器採用regulated cascode (RGC)輸入緩衝級, shunt-peaking技巧及電壓-電流回授組態,並且使用可變回授及負載電阻,可在2.2伏特跨壓下有45~52dBΩ的轉阻增益調整範圍與7~10兆赫茲的頻寬調整範圍。全部功率消耗(含輸出緩衝級)為32毫瓦。晶片大小為0.83x0.66平方公厘。
而獨特的矩陣分散式放大器採用一個2x4的矩陣結構。在這個電路中使用了交錯式中間傳輸線架構及疊接組態的增益級以增進放大器的增益及頻寬。而所有電感均用最佳化的共平面波導結構實現。在497 毫瓦的功率消耗下具有6.7 dB的增益與45.6兆赫茲的頻寬。晶片尺寸為1.8x1.05平方公厘。
The increasing popularity of internet and multimedia communication (digital TV) services has motivated the development of high-speed optical communication system. Commercial STM-64 (OC-192) operating near 10Gb/s and STM-256 (OC-768) operating near 40Gb/s are the main streams today. In recent years, the deep submicron CMOS technology has competitive high-frequency characteristics with high-speed Ⅲ-Ⅴ devices and is gradually used in high-speed circuits. The lower cost and higher level of integration make it more attractive than high-cost III-V technology for commercial use. In this thesis, a 10-Gb/s tunable transimpedance amplifier (TIA) and a 45.6-GHz matrix distributed amplifier are implemented in a standard 0.18-μm CMOS process.
The tunable TIA incorporates a regulated cascode (RGC) input buffer, shunt-peaking technique, voltage-current feedback topology and the applications of variable feedback and load resistors to achieve a 45~52-dBΩ tuning range of transimpedance gain and a 7~10-GHz tuning range of bandwidth at a 2.2-V supply voltage. Total power consumption including output buffer is 32 mW. The whole chip size is 0.83 x 0.66 mm2.
The novel matrix distributed amplifier employs a 2x4 matrix architecture. The proposed circuit adopts interleaving-central-line architecture and cascode gain stages for gain and bandwidth enhancement. Optimized CPW is used to implement the required inductors. With a power consumption of 497mW, a gain of 6.7 dB and a 3-dB bandwidth of 45.6 GHz are measured. The whole die size is 1.8x1.05 mm2.
Acknowledgements
Abstracts Ⅰ
Table of Contents Ⅴ
List of Figures Ⅶ
List of Tables Ⅸ

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 6
Chapter 2 Optical Communication System Background and
Requirements 7
2.1 Introduction of Optical Communication System 7
2.2 Basic Concepts 8
2.2.1 Date Rates 9
2.2.2 NRZ Data Format 9
2.2.3 Receiver Sensitivity and Bit Error Rate (BER) 9
2.2.4 Eye Diagram 11
2.3 Design Considerations of Broadband Amplifier
Bandwidth in Optical Communication System 13
2.3.1 Effect of Bandwidth Limitation on Eye Diagram 13
2.3.2 Tradeoff of Bandwidth between Noise and ISI 14

Chapter 3 Design of 10-Gb/s CMOS Tunable Transimpedance
Amplifier 18
3.1 Introduction 18
3.2 Proposed Tunable Transimpedance Amplifier 21
3.2.1 Regulated Cascode Input Current Buffer 21
3.2.2 Tunable Transimpedance Amplifier 23
3.3 Experimental Results 25
3.3.1 S-parameter Measurement 25
3.3.2 Eye Diagram Measurement 29
3.3.3 Performance Summary 31
3.3.4 Discussion 32
3.4 Revised Tunable Transimpedance Amplifier 34
3.4.1 Circuit Design 35
3.2.2 Simulation Results 37
3.4.3 Performance Summary 38
3.5 Conclusion 39

Chapter 4 Design of 45.6-GHz CMOS Matrix Distributed
Amplifier 40
4.1 Introduction 40
4.2 Basic Principle of Conventional CMOS Matrix
Distributed Amplifiers 41
4.3 Proposed Matrix Distributed Amplifier 46
4.3.1 Circuit Design 46
4.3.2 Device Selection 49
4.3.3 Cascode Gain Cell Design 52
4.3.4 Coplanar Waveguide Inductor Design 55
4.4 Experimental Results 58
4.4.1 S-parameter Measurement 58
4.4.2 Eye Diagram Measurement 61
4.4.3 Discussion 62
4.5 Performance Summary 64

Chapter 5 Conclusion 66
[1] Behzad Razavi, “Design of Integrated Circuits for
Optical Communications,” first Edition.

[2] R. E. Ziemer, W. H. Tranter, “Principles of
Communications Systems, Modulation, and Noise,” fifth
Edition.

[3] Bellcore, Synchronous Optical Network (SONET)
Transport Systems: Common Generic Critiria, Technical
Advisory TA-NWT-000253, Issue 6, Sep. 1990.

[4] Behzad Razavi, “Design of Analog CMOS Integrated
Circuits,” first Edition.

[5] Chia-Hsin Wu, Chih-Hun Lee, Wei-Sheng Chen, Shen-Iuan
Liu, “CMOS wideband amplifiers using multiple
inductive-series peaking technique,” IEEE J. Solid-
State Circuits, Vol. 40, no. 2, pp.548 – 552, Feb.
2005.

[6] B. Analui, A. Hajimiri, “Bandwidth enhancement for
transimpedance amplifiers,” IEEE J. Solid-State
Circuits, Vol. 39, no. 8, pp.1263-1270, Aug. 2004.

[7] C. Kromer, G.. Sialm, T. Morf, M. L. Schmatz, F.
Ellinger, D. Erni, H. Jackel, “ A low-power 20-GHz 52-
dB/spl Omega/ transimpedance amplifier in 80-nm
CMOS,” IEEE J. Solid-State Circuits, Vol. 39, no.
6, pp.885-894, June. 2004.
[8] Sung Min Park, Hoi-Jun Yoo, “1.25-Gb/s regulated
cascode CMOS transimpedance amplifier for Gigabit
Ethernet applications,” IEEE J. Solid-State Circuits,
Vol. 39, no. 1, pp.112-121, Jan. 2004.

[9] Yong-Hun Oh, Sang-Gug Lee, “An inductance enhancement
technique and its application to a shunt-peaked 2.5
Gb/s transimpedance amplifier design,” IEEE Trans.
Circuits Syst.II: Analog Digit. Signal Process., vol.
51, no. 11, pp. 624-628, Nov. 2004.

[10] S. Galal, B. Razavi,“40-Gb/s amplifier and ESD
protection circuit in 0.18-/spl mu/m CMOS
technology,” IEEE J. Solid-State Circuits, Vol. 39,
no. 12, pp.2389-2396, Dec. 2004.

[11] T. Toifl, M. Kossel, C. Menolfi., T. Morf, M.
Schmatz, “A 23GHz differential amplifier with
monolithically integrated T-coils in 0.09/spl mu/m
CMOS technology,” in IEEE MTT-S dig.,vol. 1, June.
2003, pp.239 – 242.

[12] H. Shigematsu, M. Sato, I. Hirose, F. Brewer, M,
Rodwell, “40Gb/s CMOS distributed amplifier for
fiber-optic communication systems,” in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
pp. 476-540, Feb. 2004.

[13] Ren-Chieh Liu, To-Po Wang, Liang-Hong Lu, Huei Wang,
Sung-Hsiung Wang, Chin-Ping Chao, “A 80GHz Traveling-
Wave Amplifier in a 90nm CMOS Technology,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, pp. 154-155, Feb. 2005.

[14] Y. Baeyens, R. Pullela, J. P. Mattia, H.-S. Tsai,
and Y.-K. Chen, “A 74-GHz bandwidth InAlAs/InGaAs-
InP HBT distributed amplifier with 13-dB gain,” IEEE
Microwave and Wireless Components Letters, vol. 9,
no. 11, pp. 461-463, Nov. 1999.

[15] S. Masuda, T. Takehashi, and K. Joshin, “An over-110-
GHz InP HEMT flip-chip distributed baseband
amplifier with inverted microstrip line structure for
optical transmission system,” IEEE J. Solid-State
Circuits, vol. 38, no. 9, pp. 1479-1484, Sept. 2003.

[16] Y. Arayashiki, Y. Ohkubo, Y. Amano, A. Takagi, M.
Ejima, and Y. Matsuoka, “16 dB 80 GHz InGaP/GaAs HBT
distributed amplifier,” Electronics Letters, vol.
40, no. 1, pp. 4-5, Jan. 2004.

[17] R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6-22-GHz
broadband CMOS distributed amplifier,” in Proc. IEEE
RFIC Symp., 2003, pp. 103-106.

[18] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz
fully integrated CMOS distributed amplifier using
coplanar waveguide,” in Proc. IEEE RFIC Symp., 2004,
pp. 193-196.

[19] H. Shigematsu, M. Sato, T. Hirose, F. Brewer, and M.
Rodwell, “40Gb/s CMOS distributed amplifier for
fiber-optic communication systems,” in Proc. IEEE
Int. Solid-State Circuits Conf., 2004, pp. 476-477.

[20] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S.
Chang, and J. Chern, “A miniature 25-GHz 9-dB CMOS
cascaded single-stage distributed amplifier,” IEEE
Microwave and Wireless Components Letters, vol. 14,
no. 12, pp. 554-556, Dec. 2004.

[21] K. Kobayashi, R. Esfandiari, M. Hafize, D. Streit, A.
Oki, L. Tran, and M. Kim, “GaAs HBT wideband matrix
distributed and darlington feedback amplifier to 24
GHz,” IEEE Transactions on Microwave Theory and
Techniques, vol. 39, no. 12, Dec. 1991.

[22] K. W. Chang, B. L. Nelson, A. K. Oki, and D. K.
Umemoto, “2-19-GHz low-DC power and high-IP3
monolithic HBT matrix amplifier,” IEEE Microwave and
Guided Wave Letters, vol. 2, no. 1, pp. 2001-2009,
Jan. 1992.

[23] K. Kobayashi, R. Esfandiari, W. Jones, K. Minot, B. Allen, A. Freudenthal, and D.
Streit, “A 6-21-GHz monolithic HEMT 2×3 matrix distributed amplifier,” IEEE
Microwave and Guided Wave Letters, vol. 3, no. 1, pp. 17-18, Jan. 1993.
[24] C. Paoloni and S. D’Agostino, “A design procedure for monolithic matrix amplifier,”
IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 1, pp. 11-13,
Jan. 1997.
[25] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter,
“MESFET distributed amplifier guidelines,” IEEE Transactions on Microwave
Theory and Techniques, vol. MTT-32, pp. 268-275, March 1984.
[26] S. Deibele, J. B. Beyer, “Attenuation compensation in distributed amplifier design,”
IEEE Transactions on Microwave Theory and Techniques, vol. 37, pp. 1425-1433,Sept 1989.
[27] T. C. Edwards, M. B. Steer, “Foundations of Interconnect and Microstrip Design,”
third Edition.
[28] G.E. Ponchak, M. Matloubian, L. P. B. Katehi, “A measurement-based design
equation for the attenuation of MMIC-compatible coplanar waveguides,” IEEE
Transactions on Microwave Theory and Techniques, vol. 47, no. 2, pp. 241-243, Feb.
1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林清文(2003)。高中高職學生基礎學科自我調整課業學習策略研究。中華輔導學報,13,1-44。
2. 林青瑩(1999)。青少年偏差行為的家庭因素之分析研究。公民訓育學報,8,409-456。
3. 周麗端(1980)。家庭環境與才賦優異兒童教育。家政教育。8,48-51。
4. 吳麗娟 ( 1998 )。父母自我分化、教養態度對青少年子女自我分化、因應策略及適應影響之研究。教育心理學報,30,91-132。
5. 吳毓瑩(1998)。我看、我畫、我說、我演、我想,我是誰呀?卷宗評量之概念、理論與應用。教育資料與研究雙月刊,20,13-17。
6. 張景媛(1992)。自我調整、動機信念、選題策略與作業表現關係的研究暨自我調整訓練課程效果之評估。教育心理學報,25,201-243。
7. 陳富美(2002)。母親的權威教養、民主教養、與放縱教養的交互作用與幼兒社會行為之探討。中華家政學刊,32,75-93。
8. 程炳林(2002)。大學生學習工作、動機問題與自我調整學習策略之關係。教育心理學報,33,2,96-121。
9. 楊國樞(1986)。家庭因素與子女行為:台灣研究的評析。中華心理學刊,28(1),7-28。
10. 簡茂發、何榮桂、張景媛(1998)。國中學生價值觀量表編製報告。教育心理學報,30(2),17-32。
11. 魏麗敏(1996)。國小學生學習動機、數學焦慮與數學成就之研究。國民教育研究集刊,4,133-155。
 
系統版面圖檔 系統版面圖檔