|
[1] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,” first Edition.
[2] R. E. Ziemer, W. H. Tranter, “Principles of Communications Systems, Modulation, and Noise,” fifth Edition.
[3] Bellcore, Synchronous Optical Network (SONET) Transport Systems: Common Generic Critiria, Technical Advisory TA-NWT-000253, Issue 6, Sep. 1990.
[4] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” first Edition.
[5] Chia-Hsin Wu, Chih-Hun Lee, Wei-Sheng Chen, Shen-Iuan Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid- State Circuits, Vol. 40, no. 2, pp.548 – 552, Feb. 2005.
[6] B. Analui, A. Hajimiri, “Bandwidth enhancement for transimpedance amplifiers,” IEEE J. Solid-State Circuits, Vol. 39, no. 8, pp.1263-1270, Aug. 2004.
[7] C. Kromer, G.. Sialm, T. Morf, M. L. Schmatz, F. Ellinger, D. Erni, H. Jackel, “ A low-power 20-GHz 52- dB/spl Omega/ transimpedance amplifier in 80-nm CMOS,” IEEE J. Solid-State Circuits, Vol. 39, no. 6, pp.885-894, June. 2004. [8] Sung Min Park, Hoi-Jun Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications,” IEEE J. Solid-State Circuits, Vol. 39, no. 1, pp.112-121, Jan. 2004.
[9] Yong-Hun Oh, Sang-Gug Lee, “An inductance enhancement technique and its application to a shunt-peaked 2.5 Gb/s transimpedance amplifier design,” IEEE Trans. Circuits Syst.II: Analog Digit. Signal Process., vol. 51, no. 11, pp. 624-628, Nov. 2004.
[10] S. Galal, B. Razavi,“40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology,” IEEE J. Solid-State Circuits, Vol. 39, no. 12, pp.2389-2396, Dec. 2004.
[11] T. Toifl, M. Kossel, C. Menolfi., T. Morf, M. Schmatz, “A 23GHz differential amplifier with monolithically integrated T-coils in 0.09/spl mu/m CMOS technology,” in IEEE MTT-S dig.,vol. 1, June. 2003, pp.239 – 242.
[12] H. Shigematsu, M. Sato, I. Hirose, F. Brewer, M, Rodwell, “40Gb/s CMOS distributed amplifier for fiber-optic communication systems,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 476-540, Feb. 2004.
[13] Ren-Chieh Liu, To-Po Wang, Liang-Hong Lu, Huei Wang, Sung-Hsiung Wang, Chin-Ping Chao, “A 80GHz Traveling- Wave Amplifier in a 90nm CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 154-155, Feb. 2005.
[14] Y. Baeyens, R. Pullela, J. P. Mattia, H.-S. Tsai, and Y.-K. Chen, “A 74-GHz bandwidth InAlAs/InGaAs- InP HBT distributed amplifier with 13-dB gain,” IEEE Microwave and Wireless Components Letters, vol. 9, no. 11, pp. 461-463, Nov. 1999.
[15] S. Masuda, T. Takehashi, and K. Joshin, “An over-110- GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1479-1484, Sept. 2003.
[16] Y. Arayashiki, Y. Ohkubo, Y. Amano, A. Takagi, M. Ejima, and Y. Matsuoka, “16 dB 80 GHz InGaP/GaAs HBT distributed amplifier,” Electronics Letters, vol. 40, no. 1, pp. 4-5, Jan. 2004.
[17] R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6-22-GHz broadband CMOS distributed amplifier,” in Proc. IEEE RFIC Symp., 2003, pp. 103-106.
[18] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide,” in Proc. IEEE RFIC Symp., 2004, pp. 193-196.
[19] H. Shigematsu, M. Sato, T. Hirose, F. Brewer, and M. Rodwell, “40Gb/s CMOS distributed amplifier for fiber-optic communication systems,” in Proc. IEEE Int. Solid-State Circuits Conf., 2004, pp. 476-477.
[20] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 12, pp. 554-556, Dec. 2004.
[21] K. Kobayashi, R. Esfandiari, M. Hafize, D. Streit, A. Oki, L. Tran, and M. Kim, “GaAs HBT wideband matrix distributed and darlington feedback amplifier to 24 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 12, Dec. 1991.
[22] K. W. Chang, B. L. Nelson, A. K. Oki, and D. K. Umemoto, “2-19-GHz low-DC power and high-IP3 monolithic HBT matrix amplifier,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 1, pp. 2001-2009, Jan. 1992.
[23] K. Kobayashi, R. Esfandiari, W. Jones, K. Minot, B. Allen, A. Freudenthal, and D. Streit, “A 6-21-GHz monolithic HEMT 2×3 matrix distributed amplifier,” IEEE Microwave and Guided Wave Letters, vol. 3, no. 1, pp. 17-18, Jan. 1993. [24] C. Paoloni and S. D’Agostino, “A design procedure for monolithic matrix amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 1, pp. 11-13, Jan. 1997. [25] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET distributed amplifier guidelines,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-32, pp. 268-275, March 1984. [26] S. Deibele, J. B. Beyer, “Attenuation compensation in distributed amplifier design,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, pp. 1425-1433,Sept 1989. [27] T. C. Edwards, M. B. Steer, “Foundations of Interconnect and Microstrip Design,” third Edition. [28] G.E. Ponchak, M. Matloubian, L. P. B. Katehi, “A measurement-based design equation for the attenuation of MMIC-compatible coplanar waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 2, pp. 241-243, Feb. 1999.
|