跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余名薪
研究生(外文):Ming-Hsin Yu
論文名稱:利用應力增強光通訊系統元件與電路之性能
論文名稱(外文):Strain-enhanced Device and Circuit for Optical Communication System
指導教授:劉致為
指導教授(外文):Chee-Wee Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:80
中文關鍵詞:應變矽光通訊光偵測器轉阻放大器主動電感
外文關鍵詞:Strained-SiOptical CommunicationPhoto DetectorTIAActive Inductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們將介紹機械/封裝式應力技術與光通訊系統的基本概念,而主要的重點則為光通訊系統接收端前端之光感測元件與類比電路之建構與效能之提升。在第三與第四章中,我們分別設計了一個具有金氧半穿遂二極體結構之光偵測器與一個使用N型場效電晶體形式之主動電感的轉阻放大器,經由拉伸式的應力,光偵測器之光電響應及轉阻放大器之頻寬皆可以達到一定程度的提升。在第五章中,我們則設計了一個以高速應用為考量的轉阻放大器。最後,在第六章中,我們將討論及模擬一個由矽鍺異質接面雙載子電晶體所建構之BiCMOS式新型主動電感。
In this thesis, the basic concepts of mechanical/package strain technique and optical communication system are described. Then the focus will be on the construction and performance enhancement of the photo sensing device and analog circuit in the optical communication system receiver front-end. In chapter 3 and chapter 4, a photodetector with NMOS diode structure and a transimpedance amplifier (TIA) adopting NMOSFET active inductor are designed, and through tensile strain, their responsivity and bandwidth can be enhanced respectively. Chapter 5 introduces another transimpedance amplifier designed for high speed applications. Finally, in chapter 6, a novel SiGe HBT BiCMOS type active inductor is discussed and simulated.
List of Figures VI
List of Tables XI
Chapter 1 Introduction
1.1 Motivation 1
1.2 Thesis Outline 1

Chapter 2 Mechanical/Package Strain Technique and Optical Communication System
2.1 Mechanical/Package Strain Technique 3
2.1.1 Introduction 3
2.1.2 Strain Effects on Energy Band and Carrier Mobility 4
2.1.3 Mechanical Setup 7
2.2 Optical communication systems 11
2.2.1 Introduction 11
2.2.2 Overview of the System 11

Chapter 3 A Strain-enhanced Metal/Oxide/Silicon Tunneling Diode Photodetector
3.1 Introduction 14
3.2 MOS Tunneling Diode Photodetector 15
3.3 Responsivity Enhancement by Mechanical Strain 18

Chapter 4 A Strain-enhanced Transimpedance Amplifier
4.1 Introduction 24
4.2 Circuit Architecture 24
4.3 Circuit Design 26
4.3.1 Parasitic Isolation 26
4.3.2 Core Amplifier 27
4.3.3 Output Buffer 30
4.4 Simulation Result and Layout 31
4.5 Speed Enhancement by Mechanical Strain 35
4.6 Measurement 37
4.6.1 Frequency Response 37
4.6.2 Summary 40

Chapter 5 A 7Gb/s Transimpedance Amplifier
5.1 Introduction 41
5.2 Circuit Architecture 41
5.3 Circuit Design 45
5.3.1 Parasitic Isolation 45
5.3.2 Core Amplifier 45
5.3.3 Differential Output Buffer 46
5.4 Simulation Result and Layout 48
5.5 Measurement 52
5.5.1 Frequency Response 52
5.5.2 Eye Diagram 54
5.5.3 Summary 56

Chapter 6 BiCMOS Active Inductor
6.1 Introduction 57
6.2 Basic Concepts of Active Inductor 58
6.2.1 Gyrator-C Topology 58
6.2.2 Basic Configuration of Active Inductor 59
6.3 NFET CMOS Active Inductor 61
6.3.1 Frequency Response 61
6.3.2 Quality-factor Enhancement Techniques 64
6.4 NFET-SiGeHBT BiCMOS Active Inductor 67
6.4.1 SiGe Hetero-junction Bipolar Transistor 67
6.4.2 BiCMOS active inductor 68

Chapter 7 Summary and Future Work
7.1 Summary 74
7.2 Future Work 75

References 76
[1]J.L. Hoyt, et al., “Strained Silicon MOSFET Technology,” IEDM Tech. Dig., pp. 23-26, 2002.
[2]K. Rim, et al., “Low Field Mobility Characteristics of Sub-100 nm Unstrained and Strained Si MOSFETs,” IEDM Tech. Dig., pp. 43-46, 2002.
[3]T. Ghani, et al., “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978-991, 2003.
[4]S. Maikap, et al., “Mechanically Strained Strained-Si NMOSFETs,” Electron Device Letters, Vol. 25, pp. 40-42, May 2004.
[5]R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, Dec. 1993.
[6]M. R. T. Pearson, et al., “Fabrication of SiGe optical waveguides using VLSI processing techniques,” Journal of Lightwave Technology, vol. 19, pp. 363-370, 2001.
[7]F. Y. Huang, et al., “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” IEDM Tech. Dig., pp. 665-668 , 1996
[8]Gianlorenzo Masini, et al., “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Transactions on Electron Devices, vol. 48, pp. 1092-1096, 2001.
[9]C.W. Liu, et al., “Light emission and detection by metal oxide silicon tunneling diodes,” IEDM Tech. Dig., pp. 749-752, 1999.
[10]C.W. Liu, et al., “A novel photodetector using MOS tunneling structures,” Electron Device Letters, Vol. 21, pp. 307-309, June 2000.
[11]S. M. Park and C. Toumazou, “Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication,” IEEE Int. Symp. on Circuits and Systems, vol.1, pp. 293-296, June 1998.
[12]F. Yuan, S.-R. Jan, S. Maikap, Y.-H. Liu, C.-S. Liang, and C. W. Liu, “Mechanically Strained Si-SiGe HBTs,” IEEE Elec. Device Lett., vol. 25, no. 7, pp. 483-485, 2004.
[13]Wei-Zen Chen, et al. “A 2.5 Gbps CMOS optical receiver analog front-end,” IEEE Conference on Custom Integrated Circuits, pp. 359–362, May 2002.
[14]Behzad Razavi, “A 622 Mb/s 4.5 pA/vHz CMOS transimpedance amplifier,” Dig. Tech. Papers ISSCC, pp.162 -163, 453, Feb. 2000.
[15]Behzad Razavi, Design of integrated Circuits for Optical Communications, McGRAW-Hill, 2003.
[16]Behzad Razavi, “Design of high-speed circuits for optical communication systems,” IEEE Conference on Custom Integrated Circuits, pp. 315–322, May 2001.
[17]M. Aiki, “Low-noise Optical Receiver for High-speed Optical Transmission,” IEEE Trans. Electron Dev., vol. ED-32, pp. 2693-2698, Dec. 1985.
[18]A. K. Petersen, K. Kiziloglu, T. Yoon, F. Williams, M. R. Sandor, “Front-end CMOS chipset for 10 Gb/s communication,” RFIC 2002, pp. 93-96.
[19]H. H. Ki, S. Chandrasekhar, C. A. Burrus, J. Bauman, “A Si BiCMOS transimpedance amplifier for 10-Gb/s SONET receiver,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 769 -776, May 2001.
[20]A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electronics Letters, Vol. 32, pp. 999-1000, May 1996.
[21]A. Thanachayanont and S. Sae Ngow, “Low voltage high Q VHF CMOS transistor-only active inductor,” Midwest Symposium on Circuits and Systems (MWSCAS), vol. 3, pp. 552-555, Aug. 2002.
[22]W. zhuo, et al., “Programmable low noise amplifier with active-inductor load,” IEEE Int. Symp. on Circuits and Systems, vol.4, pp. 365-368, June 1998.
[23]Joachim N., et al., “Multilevel-spiral inductors using VLSI interconnect technology,” Electron Device Letters, Vol. 17, pp. 428-430, Sept. 1996.
[24]Pin-Quan Chen, et al., “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1582-1585, Sept. 2000.
[25]Chao-Chih Hsiao, et al., “Improved quality-factor of 0.18-/spl mu/m CMOS active inductor by a feedback resistance design,” Microwave and Wireless Components Letters, Vol. 12, pp.467-469, Dec. 2002.
[26]Ismail M., et al., “A high-speed continuous-time bandpass VHF filter in MOS technology,” IEEE Int. Symp. on Circuits and Systems, vol.3, pp. 1761-1764, 1991.
[27]E.R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Transactions on Electron Devices, Vol. 44, pp. 1689-1698, Oct. 1997.
[28]J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseodopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, Vol. 14, pp. 556, 1976.
[29]T. Manku and A. Nathan, “Electron drift mobility model for devices based on unstrained and coherently strained Si1-xGex grown on <001> silicon substrate,” IEEE Transactions on Electron Devices, vol. 39, pp. 2082-9, 1992.
[30]C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, vol. 34, pp. 5621-34, 1986.
[31]C. Zeller and G. Abstreiter, “Electric subbands in Si/SiGe strained layer superlattice,” Zeitschrift fur Ohysik B (Condensed Matter), vol. 64, pp. 137-43, 1986.
[32]R. People, “Physics and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., QE-22 (9), pp. 1696, 1986.
[33]R. Braunstein, A.R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev., vol. 109(3), pp. 695, 1958.
[34]C. A. King, J. L. Hoyt, and J. F. Gibbons, “Bandgap and transport properties of Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors,” IEEE Tran. Electron Devices, vol. 36(10), pp. 2093, 1989.
[35]D. V. Lang, R. People, J.C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47(12), pp. 1333, 1985.
[36]D. Caruth et al., “A 40Gb/s integrated differential PIN+TIA with DC offset control using InP SHBT technology,” GaAs IC Symposium, pp. 59-62, 2002.
[37]Helen H. Kim et al., “A Si BiCMOS transimpedance amplifier for 10Gbs SONET receiver”, SSC, vol.36, no.5, pp. 769, May 2001.
[38]K. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fibers on a silicon wafers: a CMOS compatible optical sensor,” IEDM Tech. Dig., pp. 25–28., 1998.
[39]C. W. Liu et al., “Room-temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,” Appl. Phys. Lett., vol. 76, pp. 1516–1518, 2000.
[40]J. J. Morikuni and S. M. Kang; “An analysis of inductive peaking in photoreceiver design,” Journal of Lightwave Technology, vol. 10, pp. 1426- 1437, Oct. 1992.
[41]Jaeseo Lee, Seong Jun Song Min Park, Choong-Mo Nam, Young – Se Kwon and Hoi– Jun Yoo, “ A Multichip on Oxide of 1Gb/s 80 dB Fully Differential CMOS Transimpedance Amplifier for Optical Interconnect Applications,” ISSCC Dig. Tech., 2002.
[42]Ahmed Gasmi, Bertrand Wroblewski, Remy Leblanc, Marc Rocchi, “ Ultra Low Noise 2.5 Gbit/s 3.3V Transimpedance Amplifier With Automatic Gain Control ,” IEEE GaAs Digest, 2001.
[43]Karl Schrodinger, Jaro Stimma, and Manfred Mauthe, “ A Fully Integrated CMOS Receiver Front End for Optic Gigabit Ethernet ,” IEEE J. Solid-State Circuits , July, 2002.
[44]S. Hara, “Broad-Band Monolithic Microwave Active Inductor and Its Application to Miniaturized Wide Band Amplifier,” IEEE Trans. On Microwave Theory and techniques, vol. 36, pp. 1920-1924, Dec. 1988.
[45]H. S. P.Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8, 0.25-um CMOS technology,” IEEE Trans. Electron Devices, vol. 45, pp. 889–894, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top