跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐嘉宏
研究生(外文):Chia-Hung Hsu
論文名稱:應用於無線區域網路正交分頻多工系統之實虛部不對稱自我校準演算法及FPGA系統模型驗證
論文名稱(外文):Self I/Q Mismatch Calibration Algorithm and FPGA Prototype for WLAN OFDM Baseband Transceiver
指導教授:汪重光汪重光引用關係
指導教授(外文):Chorng-Kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:106
中文關鍵詞:無線區域網路實虛部不對稱
外文關鍵詞:I/Q MismatchCalibrationFPGAOFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,提出一個適用於IEEE 802.11 a無線區域網路系統之實虛部不對稱自我校準演算法。此演算法是在開機時由基頻接收機量測一連串的單頻信號來達到,而此單頻信號的頻率是傳送機所傳送之單頻信號頻率的兩倍。在實際的資料傳送時,剩下的實虛部不對稱量也會被繼續追蹤。因此,對於無線區域網路系統的射頻前端之要求可以大大的放寬。此外,藉由所提出的演算法,即使在傳送機和接收機都有 ±5% 的增益不對稱、 ±5˚ 的相位不對稱以及 ±232仟赫茲的載波頻率偏移的情況下,信噪比的損失也會小於0.5dB。
接下來是先由C++建立802.11a的基頻系統模型,包含浮點數及定點數模擬。再根據硬體化的定點數模擬來寫Verilog RTL程式,此外,由Simplify Pro 7.3做合成以及QuartusII 3.0來做電路的放置及繞線,然後整個IEEE 802.11的基頻收發機由Altera Stratix EP1S80 DSP板操作在40MHz來實現,總共使用了約32000個邏輯單元。最後,整個系統的量測是由Tetronix TLA 715的樣本產生器及邏輯分析儀來達到。
Based on the single tone power evaluation (STPE), a self-calibration algorithm of I/Q mismatch is proposed for the IEEE 802.11a WLAN systems. The self-calibration algorithm is performed by the digital baseband at transceiver start-up to measure the signal power of the single tone signal, which is located at the double frequency band at the receiver. Furthermore, the residual I/Q mismatch is tracked during the physical data transmission. Therefore, the design requirements of the RF front-end for the WLAN OFDM transceiver are alleviated. According to the proposed algorithm, the residual signal-to-noise ratio (SNR) degradation is totally less than $0.5$-dB with $pm5 \%$ gain mismatch ($Delta G$) and $pm5^circ$ phase mismatch ($Delta heta$) in the transmitter and receiver respectively, and carrier frequency offset (CFO $=pm232$kHz).

The system simulation of the IEEE 802.11a WLAN baseband transceiver is modeled by C++. Furthermore, it consists of 2-phase, floating and fixed point. The hardware-like fixed-point simulation, which considers the finite word length effect, is used to develop the Verilog RTL code. Besides, the Simplify Pro 7.3 and QuartusII 3.0 are used to synthesis and place and route of the Verilog RTL respectively. Moreover, the prototype of the IEEE 802.11a WLAN baseband transceiver is realized by Altera Stratix EP1S80 DSP development board with about 32000 logic elements at 40MHz. Finally, the system evaluations are measured by Tektronix TLA715 pattern generator and logic analyzer.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Basic Principles of OFDM and IEEE 802.11a Standard 3
2.1 OFDM Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Overview of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 OFDM Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Typical OFDM Transceiver . . . . . . . . . . . . . . . . . . . . . 9
2.2 Features of IEEE 802.11a Standard . . . . . . . . . . . . . . . . . . . . . 10
3 Wireless Channel Model and Transceiver Design 17
3.1 Wireless Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Power Amplifier Nonlinearity . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Power Delay Profile (PDP) . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Carrier Frequency Offset (CFO) . . . . . . . . . . . . . . . . . . . 23
3.1.5 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.6 I/Q Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.7 DC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.8 Timing Frequency Offset (TFO) . . . . . . . . . . . . . . . . . . . 32
3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Delay Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Carrier Recovery (CR) Loop . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 Timing Recovery (TR) Loop . . . . . . . . . . . . . . . . . . . . . 42
3.3 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Calibration Algorithm and Architecture of the I/Q Mismatch 47
4.1 Coarse Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Fine Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Frequency Domain Approach . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Time Domain Approach . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Calibration Timing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 FPGA Implementation 61
5.1 Introduction to FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 FPGA Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 FPGA Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Transceiver Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Complex Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Arc Tangent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.3 I/Q Mismatch Compensation and Pre-Compensation Circuits . . 68
5.4.4 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Conclusion 79
A Synplify Pro 81
A.1 Synthesis Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B Quartus II 87
B.1 Quartus II 3.0 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C PG and LA 97
C.1 Acute PG and LA Instructions . . . . . . . . . . . . . . . . . . . . . . . 97
[1] IQ Error Calibration in Transmitter. MAXIM Technical Report, 2001.
[2] Andreas Schuchert, Ralph Hasholzner, and Patrick Antonie, A novel IQ imbalance
compensation scheme for the reception of OFDM signals. IEEE Transactions on
Signal Processing, 49(10):2335 2344, 2001.
[3] J. Tubbax, A. Fort, L. Van der Perre, S. Donnay, Marc Engels, Marc Moonen and
Hugo De Man, Joint Compensation of IQ imbalance and Frequency Offset in OFDM
Systems. Globecom, p.p. 2365 2369, 2003.
[4] Vincent K.-P. Ma and Tommi Ylamurto, Analysis of IQ imbalance on initial frequency
offset estimation in direct down-conversion receivers. Workshop in Signal
Processing Advances in Wireless Communications, 158 161, March 2001.
[5] Hsin-Yu Kang, “Design and Implememtation of an MC-CDMA Baseband Transceiver,”
, Jul. 2003.
[6] R. van Nee and R. Prasad, “OFDM for Wireless Multimedia Communications,”
3rd ed., Artech House, Boston, Jul. 2000.
[7] A. Pandharipande, “Principles of OFDM” IEEE Potential, Apr.-May. 2002.
[8] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for High-speed Physical Layer in the 5 GHz Band IEEE std. 802.11a,”
1999.
[9] L. B. Jackson., “Digital Filters and Signal Processing,” Toppan, 1996.
[10] L. Litwin, “An Introduction to Multicarrier Modulation,” IEEE Potential, Apr.-
May. 2000.
[11] A. Doufexi et al., “A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless
LAN Standards,” IEEE Comm. Mag., May 2002.
[12] Z. H. Belkov and B. Spasenovski, “Performance Comparison of IEEE and ETSI
HIPERLAN Type 1 under Influence of Burst Noise Channel,” IEEE WCNC, Sept.
2002.
[13] Simon R. Saunders, “Antennas and Propagation for Wireless Communiication Systems,”
Wiely, 2001.
[14] A. A. M. Saleh and R. A. Valenzuela, “A Static Model for Indoor Multipath Propagation,”
IEEE JSAC, vol. 5, 1987.
[15] P. H. Moose, “A Technique for Orthoganal Frequency Division Multiplexing Frequency
Offset Correcion,” IEEE Trans. On Comm., Oct. 1994.
[16] T. Pollet et al, “BER Sensitivity of OFDM System to Carrier Frequency Offset and
Wiener Phase Noise,” IEEE Trans. On Comm., Feb./Mar./Apr. 1995.
[17] E. Costa, S. Pupolin, “M-QAM-OFDM System Performance in the Presence of a
Nonlinear Amplifier and Phase Noise,” IEEE Trans. On Comm., vol. 50, pp. 462 -
472, Mar. 2002.
[18] D. Kreb, O. Ziemann and R. Dietzel, “Electronic simulation of phase noise,” Eur.
Trans. Telecommum, vol. 6, pp. 671 - 674, Nov./Dec. 1995.
[19] Marc Engels, Wireless OFDM Sytems, KAP, 2002.
[20] T. Pollet et al., “The BER Performance of OFDM Systems Using Non-Synchronized
Sampling,” IEEE GLOBECOM, Nov./Dec. 1994.
[21] M. Sliskovic., “Carrier and Sampling Frequency Offset Estimation and Correction
in Multicarrier Systems,” IEEE GLOBECOM, Nov. 2001.
[22] H. Nogami and T. Nagashima, “A Frequency and Timing Period Acquisition Technique
for OFDM Systems,” IEEE Int. Symp. on PIMRC, Sep. 1995.
[23] Wei-Hsiang Tseng, “OFDM Baseband Transceiver Architecture Design and Implementation
for IEEE 802.11a,” Jun. 2003.
[24] Behzad Razavi, RF Microelectronics. Prentice Hall, 1998.
[25] L. Erup et al, Interpolation in Digital Modems-PartII: Implenmentation and Performance.
IEEE Trans. on Comm., June 1993.
[26] T. Pollet and M. Peeters, “Synchronization with DMT Modulation,” IEEE Comm.
Mag., Apr. 1999.
[27] J. J. van de Beek et al., “ML Estimation of Time and Frequency Offset in OFDM
Systems,” IEEE Trans. on Signal Processsing, Jul. 1997.
[28] D. Matic et al., “OFDM Timing Synchronization: Possibilities and Limits to the
Usage of the Cyclic Prefix for Maximum Likelihood Estimation,” IEEE Vehicular
Tech. Conf., Sep. 1999.
[29] S. Johansson et al., “Implementation of an OFDM Synchronization Algorithm,”
IEEE Midwest Symp. on Circuit and Systems, Aug. 1999.
[30] J. J. van de Beek et al., “Low-Complex Frame Synchronization in OFDM Systems,”
IEEE Int. Conf. on Universal Personal Comm., Nov. 1995.
[31] D. Landstrom et al., “Symbol Time Offset Estimation in Coherent OFDM Systems,”
IEEE Trans. on Comm., Apr. 2002.
[32] N. Lashkarian and S. Kiaei, “Minimum Variance Unbiased Estimation of Frequency
Offset in OFDM Systems, a Blind Synchronization Approach,” IEEE Proc.
ICASSP, Jun. 2000.
[33] S. Ghahramani, “Fundamentals of Probability,” Prentice-Hall, 1996.
[34] S. Haykin, “Communication Systems,” 4th ed., John Wiley, 2001.
[35] L. Jia et al., A New VLSI-Oriented FFT Algorithm and Implementation. IEEE
ADIC Conf., Sept. 1998.
[36] L. B. Jackdon, Digital Filters and Signal Processing. 3rd ed., Toppan, 1996.
[37] Patrick Vandenameele, Liesbet Van der Perre and Marc Engels, Space Division
Multiple Access for Wireless Local Area Neetworks. The Kluwer International
Series in Engineering and Computer Science, Kluwer Academic Publishers, 2001.
[38] J. Tubbax, B. C´ome, L. Van der Perre, S. Donnay and Marc Engels, IQ imbalance
compensation for OFDM systems. IEEE International Conference on Communucations
ICC,5:3403 3407 2003.
[39] Stratix EP1S80 DSP Development Board Data Sheet. ver. 1.1, May, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [47] 何榮桂,從教育部之資訊教育推展策略看未來中小學資訊教育的願景,資訊與教育雜誌,68期,1998,pp.2~13
2. [46] 何榮桂,台灣資訊教育的現況與發展--兼論資訊融入教學,資訊與教育,第87期,2002,pp.22~48
3. [41] 王春生,教育專業成長資訊融入教學提昇學生學習,北縣教育,第50期,93/12/30出版
4. [39] 王全世,資訊科技融入教學之意義與內涵,資訊與教育雙月刊,第80期,2000,pp.23~31
5. [37] 元庚鮮,資訊時代對資訊教育的認知,臺灣教育,第572期,1998,pp.17-19
6. 4、黃嘉興、許月瑜(1999),「外資對台灣股市的影響」,臺北銀行月刊,第29卷第4期,58-71。
7. [58] 紀國鐘,普及政府服務、縮短數位落差,「研考雙月刊」,第27卷,第1期,pp.30~39,2003。
8. [61] 徐新逸。學校推動資訊融入教學的實施策略探究。教學科技與媒體,第64期,2003,pp.68-84。
9. [62] 徐瑞奎,從學校端看九年一貫資訊教育研習資訊,第21卷,第3期,2004/06,pp.49~53
10. [69] 陳香吟,數位落差–資訊教育行政與實務問題,教育研究月刊,第99期, 2002,pp.15-27。
11. [71] 彭慧鸞,資訊時代國際關係理論與實務之研究,問題與研究,第39期,2000,pp.1~15
12. [72] 曾春榮,資訊融入教學與實務運用,北縣教育,第50期,93/12/30出版
13. [76] 曾淑芬,數位落差,資訊社會研究,第2期,pp.234-237,2002
14. [79] 項靖,邁向資訊均富:我國數位落差現況之探討,東吳政治學報,第16期,2003,pp.127-160
15. [93] 劉遠楨,淺談「資訊科技融入教學」,第44卷,第6期,國民教育,2004/8,pp.2~6