跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪兆慶
研究生(外文):Chao-Ching Hung
論文名稱:應用於時脈產生器之互補式金氧半延遲鎖定迴路設計
論文名稱(外文):Design of CMOS Delay-Locked Loop for clock generator applications
指導教授:陳信樹
指導教授(外文):Hsin-Shu Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:95
中文關鍵詞:時脈產生器延遲鎖定迴路校正
外文關鍵詞:clock generatordelay locked loopcalibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著CMOS製程技術的進步,超大型積體電路設計在速度上的效能快速的增加,電路的複雜度也越來越高,系統單晶片的實現也不再是夢想了。每個電路模組間的資料通常需要一個經由時脈產生器所產生的時脈來同步化,另外,對某些應用來說,系統也會需要多個相同頻率卻不同相位延遲的時脈,此時,為了確保每個相位間的延遲都相同,多相位時脈產生器的設計就是一個很重要的課題。延遲鎖定迴路與鎖相迴路是兩種非常廣泛的被用來達成系統同步的電路。傳統的延遲鎖定迴路為一階的電路,而鎖相迴路則是高階的電路。相較於高階的電路來說,一階電路具有穩定、容易設計的優點,此外跟鎖相迴路比起來,延遲鎖定迴路的低時脈抖動也是讓它受歡迎的原因之一。

在第一章中,將介紹延遲鎖定迴路的應用與基本理論。延遲鎖定迴路上的參數,如頻寬、抖動效能及鎖定時間將會一一說明。另外有別於之前的理論,新的小訊號模型與分析將會被介紹。

在第二章中,延遲鎖定迴路的設計考量將會被提出。一些常用的相位偵測器、充放電泵及電壓控制延遲單元電路也將分類說明。

在第三章中,我們將會提出一個校正電路,使得延遲鎖定迴路的多相位時脈都具有相同的時脈延遲。利用可變延遲的輸出緩衝器,我們可以用來補償延遲線 上延遲單元間因為製程變異所產生的延遲不匹配。如此一來,我們就可以期望經過輸出緩衝器後的時脈都會有相同的相位延遲。我們所提出的架構是以0.35-微米的互補是金氧半製程製造,電路面積為2.1*1.0平方微米,包含輸入及輸出緩衝電路。

在第四章中,我們介紹量測電路板的製作,量測波形跟電路表現也會被介紹。當輸入時脈頻率為100MHz而操作電壓是3.3V時,量測到的峰值抖動是58ps。

在第五章中,我們將會對這個電路做總結。
With the progress of CMOS technique, the speed performance of VLSI system is increasing rapidly. The complexity of circuits becomes higher and higher. Implementation of system on a chip (SOC) is not a dream anymore. The circuits need a global clock which is generated from a clock generator to synchronize the timing among modules. Besides, for some special applications, systems also need clocks which have the same frequency but difference phase. Meanwhile, in order to ensure that the delays among the clocks are the same, the design of multi-phase clock generator is an important issue. DLLs and PLLs are two kinds of circuit which are widely used to synchronize the system. Traditional DLL is a first order circuit and PLL is a higher order circuit. Compared with higher order circuit, first order circuit is simple and stable. Besides, compared with PLL, the property of low jitter performance of DLL is also one reason why it is more popular.

In chapter one, applications and basic theory are introduced. The parameters of DLL such as bandwidth, jitter performance, and lock time are also elucidated. Besides, different from former theories, latest small signal model and analysis are elucidated as well.

In chapter two, design considerations of DLL are introduced. Some commonly used circuits of the phase detectors, charge pump, and voltage-controlled delay cells are classified.

In chapter three, a calibration circuit which can make the multi-phase clocks of DLL have equal delays are presented. With the variable delay output buffer, we can compensate the delay mismatch due to process variations. Therefore, we can expect that these output clocks of the buffers have equal delay. The proposed architecture have been fabricated in a 0.35-um CMOS process. The whole chip area is 2.1*1.0 mm2 including I/O buffers.

In chapter four, the fabrication of PCB is introduced. The measured waveform and circuit performance are presented as well. When input frequency is 100MHz and operating voltage is 3.3V, the measured pk-pk jitter is 58ps.

In chapter five, we conclude this work.
摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables ix

Chapter 1 Introductions of the Delay-Locked Loops 1
1.1 Basics of the Delay-Locked Loops 1
1.2 The Applications for DLLs 4
1.2.1 Clock Deskew Buffer 4
1.2.2 Data Links 6
1.2.3 Frequency Multiplier as a Local Oscillator for RF Front End 10
1.3 Theory analysis and model of DLLs 12
1.3.1 Charge Pump DLL model 12
1.3.2 Discrete-time DLL model 14
1.3.3 Jitter Transfer Characteristics 18
Chapter 2 Design Considerations of the Delay-Locked Loop and its Building Blocks 23
2.1 Design considerations of the DLLs 23
2.1.1 Stability Analysis 24
2.1.2 Other considerations of the Delay-Locked Loop 25
2.1.3 Design problems of the Delay-Locked Loop 27
2.2 Building blocks of the DLLs 33
2.2.1 Phase Detector 33
2.2.2 Charge Pump 37
2.2.3 Voltage-Controlled Delay Cell 43
2.2.4 Phase Interpolator 48
Chapter 3 A self-calibrated precisely-equal-delay multiphase DLL-based clock generator 51
3.1 Introduction 51
3.2 Proposed Calibration Algorithm 52
3.3 Monte Carlo Analysis 54
3.4 Circuit Architecture 57
3.5 Circuit description 58
3.5.1 Phase Frequency Detector (PFD) 58
3.5.2 Charge Pump (CP) 59
3.5.3 Voltage Controlled Delay Cell (VCDL) 59
3.5.4 Scaling Linear and Bias Circuits 60
3.5.5 Startup Circuit 61
3.5.6 Lock Detector 62
3.5.7 Phase Comparator and Interpolator 63
3.5.8 Variable Delay Output Buffer 65
3.6 Simulation Result 65
3.6.1 System Behavior Simulation 65
3.6.2 Circuit Level Simulation 67
3.7 Summary 71
Chapter 4 Measurement Setup and Experimental Results 74
4.1 Introduction 74
4.2 Measurement Setup 75
4.3 Print Circuit Board Layout 76
4.4 Experimental Results 81
Chapter 5 Conclusions 90
Bibliography 92
[1] Y. Moon, J.Choi, K. Lee, D. K. Jeong, M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance”, IEEE J. Solid-State Circuits, vol. 35, no. 3, pp 377-384, March 2000.
[2] Y. J. Jung, S. W. Lee, D. Shim, W. Kim, C. Kim, S. I. Cho, “A dual-loop delay-locked loop using multiple voltage-controlled delay lines”, IEEE J. Solid-State Circuits, vol. 36, no. 5, pp 784-791, May 2001.
[3] D. J. Foley, and M. P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator”, IEEE J. Solid-State Circuits, vol. 36, no. 3, pp 417-423, March 2001.
[4] M. Mota, J. Christiansen, “A high-resolution time interpolator based on a delay locked loop and an RC delay line”, IEEE J. Solid-State Circuits, vol. 34, no. 10, pp 1360-1366, Oct. 1990.
[5] J. Christiansen, “An integrated high resolution CMOS timing generator based on an array of delay locked loops”, IEEE J. Solid-State Circuits, vol. 31, no. 7, pp 952-957, July 1996.
[6] R.B. Watson, Jr. and R. B. Iknaian, “Clock buffer chip with multiple target automatic skew compensation”, IEEE J. Solid-State Circuits, vol. 30, no. 11, pp 1267-1276, Nov. 1995.
[7] S. I. Liu, J. H. Lee, and H. W. Tsao, “Low-power clock-deskew buffer for high-speed digital circuits”, IEEE J. Solid-State Circuits, vol. 34, no. 4, pp 554-558, Apr. 1999.
[8] H. Sutoh, K. Yamakoshi and M. Ino, “Circuit techniques for skew-free clock distribution”, IEEE Custom Integrated Circuits Conf., pp. 163-166 1995
[9] C. Y. Yang, S. I. Liu, “A One-Wire Approach for Skew-Compensating Clock Distribution Based on Bidirectional Techniques”, IEEE J. Solid-State Circuits, vol. 36, no. 2, pp 266-272, Feb. 2001.
[10] M. Galles et al. “Spider: a high-speed network interconnect”, IEEE Micro, J vol. 17, no. 1, pp. 34-39, Jan.-Feb. 1997.
[11] John E. McNamara, “Technical Aspects of Data Communication”, 2nd ed., Digital Press, Bedford, MA, 1982.
[12] G.. Chien and P. R. Gray, “A 900MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications”, IEEE J. Solid-State Circuits, vol. 35, no. 12, pp 1996-1999, Dec. 2000.
[13] G.. Chien, “Low-noise local oscillator design techniques using DLL-based frequency multiplier for wireless applications”, Ph. D. dissertation, Univ. of California, Berkeley, 2000.
[14] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, vol. 31, no. 11, pp 1723-1732, Nov. 1996.
[15] J. Begueret, Y. Deval, O. Mazouffre, A. Spataro, P. Fouillat, E. Benoit, J. Mendoza, “Clock generator using factorial DLL for video application”, IEEE Custom Integrated Circuits, pp 485-488, 2001.
[16] MEAD Microelectronics Inc., “Lecture notes for phase-locked loops, oscillators, and frequency synthesizer”, 1998.
[17] S. Kim, K. Lee, Y.Moon, D. K. Jeong, Y. Choi and H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL”, IEEE J. Solid-State Circuits, vol. 32, no. 5, pp 691-700, May 1997.
[18] G. K. Dehng, J. M. Hsu, C. Y. Yang and S. I. Liu, “Clock-deskew buffer using a SAR-controlled delay-locked loop”, IEEE J. Solid-State Circuits, vol. 35, no. 8, pp 1128-1136, Aug. 2000.
[19] M. J. Lee, W. J. Dally, J. W. Poulton, P. Chiang, S. E. Greenwood, “An 84-mW 4-Gb/s clock and data recovery circuit for serial link applications”, VLSI Circuits, Digest of Technical Papers, 2001 Symposium on, pp.149-152, 2001.
[20] W. Rhee, “Design of the high-performance CMOS charge pumps in the phase-locked loops”, ISCAS Circuits and Systems, proceedings of the 1999 IEEE International Symposium, vol. 2, pp. 545-548, 1999.
[21] J. G.. Maneatis, “precise delay generation using coupled oscillators”, Ph. D. dissertation, Stanford University, June 1994.
[22] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-vdd capability”, IEEE J. Solid-State Circuits, vol. 34, no. 12, pp 1951-1960, Dec. 1999.
[23] M. G. Johnson and E. L. Hudsin, “A variable delay line PLL for CPU-coprocessor synchronization”, IEEE J. Solid-State Circuits, vol. 23, no. 5, pp 1218-1223, Oct. 1998.
[24] J. S. Lee, M. S. Keel, S. I. Lim, S. Kim, “Charge pump with perfect current matching characteristic in phase-locked loop”, Electronics Letters, vol. 36, no. 23, pp. 1907-1908, Nov. 2000.
[25] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, vol. 31, no. 11, pp 1723-1732, Nov. 1996
[26] M. Mota, J. Christiansen, “A four-channel self-calibrating high-resolution time to digital converters”, IEEE Electronics, Circuits and Systems, vol. 1, pp. 409-412, 1998.
[27] J. J. Kim, S. B. Lee, T. S. Jung, C. H. Kim, S. I. Cho, and B. Kim, “Low-jitter mixed-mode DLL for high-speed DRAM application”, IEEE J. Solid-State Circuits, vol. 35, no. 10, pp 1430-1436, Oct. 2000.
[28] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock”, IEEE J. Solid-State Circuits, vol. 37, no. 6, pp 711-715, June 2002.
[29] H. H. Chang, “Design and Application of CMOS Digital/Analog Delay-Locked Loops”, Ph. D. dissertation, National Taiwan University, June 2004.
[30] Lin Wu, William C., Black Jr., “A Low-Jitter Skew-Calibrated Multi-Phase Clock Generator for Time-Interleaved Applications” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2001, pp. 396-397.
[31] C. H. Park, O. Kim, B. Kim, “A 1.8-GHz Self-Calibrated Phase Locked Loop with Precise I/Q Matching”, IEEE J. Solid-State Circuits, vol. 36, no. 5, pp 777-783, May 2001
[32] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors”, IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439, June 1989.
[33] T. S. Lim, S. H. Wang, B. Kim, “A low jitter, fast locking delay locked loop using measure and control scheme”, SSMSD Mixed-signal Design, Southwest Symposium on, pp. 45-50, 2001
[34] H. H. Chang, J. W. Lin, C. Y. Yang, S. I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, pp. 1021-1027, Aug. 2002.
[35] B.Kim, “High speed clock recovery in VLSI using hybrid analog/digital techniques,”Ph. D. dissertation, Univ. of California, Berkeley, Memo. UCB/ERL M90/50, June 1990.
[36] A. Harjimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 790-804, June 1999.
[37] T. Saeki, M. Mitsuishi, H. Iwaki, and M. Tagishi, “A 1.3-cycle Lock time, non-PLL/DLL clock multiplier based on direct clock cycle interpolation for clock on demand,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1581-1590, Nov. 2000.
[38] National Semiconductor, LM117/LM317A/LM317 3-Terminal Adjustable Regulator Data Sheet, National Semiconductor, Inc., 1997.
[39] M.-J. E. Lee, W. J. Dally, T. Greer, Hiok-Tiaq Ng, Ramin Farjad-Rad, J. Poulton, and R. Senthinathan, “Jitter Transfer Characteristics of Delay-Locked Loops-Theories and Design Tecchniques,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 614-621, April 2003.
[40] R. Farjad-Rad et al., “A 0.2-2GHz 12-mW multiplying DLL for low-jitter clock synthesis in highly integrated data-communication chips,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 76-77.
[41] A. Waizman, “A delay line loop for frequency synthesis of de-skewed clock,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1994, pp. 298-299.
[42] M.-J. E. Lee, W. J. Dally, and P. Chiang, “Low-power, area efficient, high speed I/O circuit techniques,” IEEE J. Solid-State Circuits, vol. 35, pp. 1591-1599, Nov. 2000.
[43] G. Y. Wei et al., “A variable-frequency parallel I/O interface with adaptive power-supply regulation,” IEEE J. Solid-State Circuits, vol. 35, pp. 1600-1610, April 2000.
[44] T. Lee et al., “A 2.5-V CMOS delay-locked loop for an 18-Mbit 500-Megabyte/s DRAM,” IEEE J. Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994.
[45] S. Tam et al., “Clock generation and distribution for the first IA-64 microprocessor,” IEEE J. Solid-State Circuits, vol. 35, pp. 1545-1552, Nov. 2000.
[46] S. Sidiropoulos and M. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, pp. 1683-1692, Nov. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top