跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭明璋
研究生(外文):Ming-Zhang Kuo
論文名稱:以0.18umCMOS積體電路技術設計250MHz4Kb靜態隨機存取記憶體
論文名稱(外文):A 250MHz 4Kb SRAM Design in CMOS 0.18um Technology
指導教授:陳中平陳中平引用關係
指導教授(外文):Charlie Chung-Ping Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:64
中文關鍵詞:記憶體
外文關鍵詞:SRAM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文的主題是描述如何實現一個四千位元的靜態隨機存取記憶體電路。為了要達到可以在低工作電壓下正確地讀取資料,本文提出了一種改良式電流栓鎖感測放大器電路。這篇論文總共分為五個章節,其中第一章及第五章為導論及結論,在第二章裡,將會介紹整體靜態隨機存取記憶體的電路架構,同時也將介紹各個基本電路及其設計考量。

在第三章裡我們將分析感測放大器。 由於輸入阻抗的差異,感測放大器在時間延遲的表現上有很大的差別。同時也將介紹幾種常用的感測放大器並分析其優缺點以及對常用的電流栓鎖感測放大器作些微的修改使其適用於低工作電壓。
第四章裡詳述了電路實作,我們使用0.18um標準互補式金氧半製程實現一個四千位元的靜態隨機存取記憶體電路。我們所實現的靜態隨機存取記憶體電路讀取延遲時間為2.0557nS。晶片的主體佔了1.056002 ╳ 1.090342 mm2,當電路工作在250MHz的情況下,整個電路消耗了15.658毫瓦。
Abstract
This thesis describes the implementation of a 4Kb static random access memory circuit. In order to correctly perform a read operation at low voltage, the current
latched sense amplifier is improved. This thesis is divided into five chapters. The first chapter is the introduction.
In the chapter 2, the architecture and the design considerations of SRAM are presented.
In chapter 3, we describe the sense amplifiers in detail. The difference of the
input resistance makes the delay differ a lot in sensing time.
Chapter 4 presents the circuit implementation. A 4Kb SRAM is implemented with a standard 0.18um CMOS process. The access time of SRAM is 2.0557ns. The core circuit of the chip occupies 1.056002 ╳ 1.090342 mm2 and it consumes
15.658mW when working at 250MHz.
1. Introduction 1
1-1 Motivation……………………… 1
1-2 Organization…………………… 2
2. SRAM Architecture 3
2-1 Memory organization………… 3
2-2 Operation modes…………………5
2-2-1 Read operation……………… 5
2-2-2 Write operation…..…………7
2-3 Timing and power analysis……8
2-3-1 Memory timing parameters… 8
2-3-2 Power analysis in the simple SRAM…..….... 10
2-3-3 Delay analysis in the simple SRAM… ………. 11
2-4 Divided word line………………….……… …….. 13
2-4-1 Power consumption in the divided word line structure 14
2-4-2 Delay in the divided word line structure…..……….... 15
2-5 Memory circuits…………………….………………………..... 16
2-5-1 SRAM Cells……………………………...................... 16
2-5-2 Decoders…..………..................................................... 18
2-5-3 Column precharge circuits…........................................ 23
2-5-4 Sense amplifier............................................................. 25
2-5-5 Replica circuit............................................................... 25
2-6 Summary................................................................................. 28
3. Sense amplifier 29
3-1 Sense amplifier classification………………………………... 29
3-2 Delay analysis in voltage and current sense amplifiers……… 30
3-3 Conventional CMOS differential amplifier.............................. 32
3-4 Latch type sense amplifier………………………………........ 36
3-5 Current latched sense amplifier................................................ 38
3-6 The improved current latched sense amplifier......................... 40
3-7 Summary................................................................................... 43
4. A 4Kb SRAM circuit design 45
4-1 Introduction………………………………………….............. 45
4-2 Cell array…………….............................................................. 46
4-2-1 Divided Word Line…………………………….......... 46
4-2-2 Cell stability…..………............................................... 47
4-2-3 Layout…...................................................................... 48
4-3 Decoder………......................................................................... 49
4-4 Sense amplifier…………………………………………......... 51
4-5 4Kb SRAM simulation result................................................... 56
4-6 Conclusions.............................................................................. 59
5. Conclusions 61
6. References 63
[1] G.K.Konstadinidis et al. The implementation of a Third-Generation 1.1-GHz
64-bit Microprocessor. IEEE journal of Solid-State Circuits (Nov. 2002),
1461-1469.
[2] J.Montanaro, R.T Witek, K, Anne, A.J. Black, E.M. Cooper, D.W. Dobberpuhl,
P.M.Donahue, J.Eno, A.Farell, G.W.Hoeppner, D.Kruckemyer, T.H.Lee, P.Lin,
L.Madden, D.Murray, M.Pearce, S.Santhanam, K.J.Snyder, R.Stephany, Thier.
A 160 MHz 32 b 0.5 W CMOS RISC microprocessor. In IEEE Solid-State
Circuits Conference (Feb 1996), pp. 214-215.
[3] S.D. Naffziger, G.Colon-Bonet, T.Fischer, R.Riedlinger, T.J.Sullivan,
T.Grutkowski. The implementation of the Itanium 2 microprocessor. IEEE
Journal of Solid-State Circuits (Nov. 2002),1448-1460.
[4] W.J.Bowhill, R.L.Allmon, S.L.Bell, E.M.Cooper, D.R. Donchin, J.H.
Edmondson, T.C.Fischer, P.E.Gronowski, A.K.Jain, P.L.Kroesen, B.J.Loughlin,
R.P.Preston, P.I.Rubinfeld, M.J.Smith, S.C.Thierauf, G.M.Wolrich. A 300MHz
64b quad-issue CMOS RISC microprocessor. In IEEE Solid-State Circuits
Conference (Feb. 1995), pp.182-183.
[5] K.Itoh, “VLSI Memory Chip Design”,Baifukan, Tokyo, 1994.
[6] Itoh, Kiyoo, Sasaki, Katsuro, and Nakagome, Yoshinobu, “Trends in
Low-Power RAM Circuit Technologies”, Proceedings of the IEEE, vol. 83, pp.
524-543, april 1995.
[7] Dally, William J. and Poulton, John W., Digital Systems Engineering,
University Press, Cambridge, 1998.
[8] Keeth, Brent and Baker, Jacob R., DRAM Circuit Design - A Tutorial, IEEE
Press, New York, 2001.
[9] Tegze P. Haraszti. CMOS Memory Circuits. Kluwer Academic Publishers,
2000.
[10] E. Seevinck Sr., F.J. List, and J. Lohstroh. Static-noise margin analysis of MOS
SRAM cells. IEEE Journal of Solid-state Circuits, 22:748-754, October 1987.
[11] Azeez J. Bhavnagarwala, Xinghai Tang, and James D. Meindl. The impact of
intrinsic device fluctuations on CMOS SRAM cell stability. IEEE Journal of
solid-state Circuits, 36:658-665, April 2001
[12] Rabaey, Jan M., Digital Integrated Circuits - A Design Perspective, Prentice
Hall, Upper Saddle River, New Jersey, 1996.
[13] Bharadwaj S. Amrutur and Mark A. Horowitz,“A replica technique for
wordline and sense control in Low-Power SRAM’s” IEEE Journal of
Solid-State Circuits, Vol. 33, NO. 8, August 1998
[14] E. Sccvinck, P.J. van Beers, and H.Ontrop, “Current-Mode Techniques for
High-Speed VLSI Circuits with Application to Current Sense Amplifier for
CMOS SRAM’s,”IEEE Journal of solid-State Circuits Vol1.26 No.4
pp.525-536 April 1991
[15] B. Razavi,“Design of Analog CMOS Integrated Circuits,” Mcgraw-Hill
international Edition, 2001.
[16] V.Kristovski and Y.L.Pogrbeny,“New Sense Amplifier for Small-Swing CMOS
Logic Circuits,” IEEE Trans, On Circuit and Systems, vol. 47, p.p 573-576,
June, 2000
[17] J.R. Cavaliere, “Sense Amplifier,” United States Patent 3,879,632, Apr. 18,
1973.
[18] D. C. Galbraith, “Dynamic Sense Amplifier for CMOS Static RAM,” United
States Patent 4,843,264, June, 1989.
[19] Singh, Shobha, Azmi, Shamsi, Agrawal, Nutan, Phani, Penaka, and Rout,
Ansuman, “Architecture and Design of a High Performance SRAM for SOC
Design”, Proceedings of the 15th International Conference on VLSI Design,
pp. 447-451, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top