跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林上達
研究生(外文):Shun-Da Lin
論文名稱:適用於IEEE802.11a/b/g雙頻頻率合成器之設計與實現
論文名稱(外文):Design and Implementation of Dual-Band Frequency Synthesizer for IEEE 802.11a/b/g
指導教授:呂良鴻
指導教授(外文):Liang-Hung Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:80
中文關鍵詞:頻率合成器雙頻低功率可適性頻寬
外文關鍵詞:frequency synthesizerdual-bandlow poweradaptive bandwidth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於無線通訊系統的蓬勃發展以及無線通訊市場的快速成長,射頻前端接收發器的研究如雨後春筍般成長。其中以低功耗、低成本、高整合性電路為目前無線通訊科技的主流。CMOS製程成為低價無線通訊系統的熱門製程。除此之外,單晶片整合不同系統規格亦漸為設計的主流。目前IEEE 802.11系列為無線通訊系統之主要規格,802.11a為操作在5-GHz附近的頻帶,而802.11b與802.11g則操作在2.4-GHz的頻段。

在本論文中,將以整合802.11a/b/g的頻率合成器為主要研究專題。共分成三個晶片探討:適用於IEEE 802.11a/b/g之CMOS雙頻頻率合成器、適用於IEEE 802.11a/b/g之CMOS雙迴路雙頻頻率合成器以及可適性頻寬低功耗頻率合成器。雙頻的機制是以取出偶次項諧波放大的方式來取得倍頻的訊號。第一顆雙頻的頻率合成器在2.4-GHz與5.2-GHz分別達到相位雜訊-105dBc/Hz@1MHz以及 -84dBc/Hz@1MHz。整體的功耗為39mW。以台積電點三五的製程下線。第二顆的雙迴路架構則是在合理低的雜訊敏感度下加大可調範圍並可實現27%之可調頻率範圍。並將第一顆晶片加以改良,得到在2.4-GHz與5.2-GHz分別達到相位雜訊-112dBc/Hz@1MHz以及 -102.5dBc/Hz@1MHz。整體的功耗為33.7mW。同樣以台積電點三五的製程下線。第三顆的可適性頻寬則是利用可適性地加大迴路頻寬加快鎖頻速度以及減小迴路頻寬以得到較低的雜訊信號。在模擬的1.8-V電源供應當中,整體的電路只消耗了8mW而除頻器只消耗了1mW的功耗。以台積電點一八製程下線,晶片面積為0.86mm×0.73mm2。
Recently, the explosively development of the wireless communication system and the rapidly growing market has motivated research and development of the analog transceiver front end. Low-power, low-cost and high-integration integrated circuit has become the trend of the wireless technology. Those characteristic and the progress of the sub-micron CMOS process makes CMOS process has become very attractive process to implement wireless communication systems. Besides, the integration of different system in a single chip has also become the mainstream. At present, IEEE 802.11 series are the main standards of the wireless communication, and 802.11a, 802.11b, and 802.11g are the most extensively used. 802.11a operates around 5 GHz, 802.11b and 802.11g operate at 2.4GHz.

In this thesis, dual-band frequency synthesizer for IEEE 802.11a/b/g has been chosen as the research topic. A dual-band CMOS frequency synthesizer for IEEE 802.11a/b/g, a dual-loop dual-band CMOS frequency synthesizer for IEEE 802.11a/b/g, and an adaptive bandwidth low-power frequency synthesizer are presented. The dual-band function is to generate the doubled-frequency signal by amplifying the second order harmonic of the VCO. The dual-band CMOS frequency synthesizer operates in both 2.4GHz and 5.2GHz while exhibiting a phase noise of -105dBc/Hz@1MHz in 2.4GHz and -84dBc/Hz@1MHz in 5.2GHz. It also exhibits a spur level of -35dBc. It has fabricated in TSMC 0.35-um two-poly, four-metal technology and consumes 39mW. The dual-loop architecture used in the second synthesizer is to enlarge the tuning range with reasonably low noise sensitivity. A 27% frequency tuning range is achieved and exhibits a relatively good phase noise of -112dBc/Hz@1MHz in 2.4GHz and -102.5dBc/Hz@1MHz in 5.2GHz. The spur level is -40dBc. It has also been fabricated in TSMC CMOS 0.35-um two-poly, four-metal technology and consumes 33.7mW from a 3.3V supply. Finally, the adaptive bandwidth enhances the tracking capability by extending loop bandwidth and generates a low phase noise clock signal by lowering the loop bandwidth adaptively. In simulation, it exhibits very low power consumption that the whole synthesizer consumes only 8mW and the programmable divider consumes only 1mW under 1.8V operation. The synthesizer is implemented in 0.18-μm CMOS process and the die size is 0.86mm×0.73mm2.
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 3

Chapter2 PLL fundamentals 5
2.1 General considerations 5
2.1.1 Phase noise 5
2.1.2 Reference spur 7
2.1.3 Settling time 7
2.1.4 Output frequency range 8
2.2 Building blocks 8
2.2.1 Voltage Controlled Oscillator (VCO) 9
2.2.2 Frequency divider 9
2.2.3 PFD 10
2.2.4 Charge Pump 11
2.2.5 Low pass filter (LPF) 13
2.3 System analysis 13
2.4 Noise analysis 15
2.4.1 Phase noise at input 15
2.4.2 Phase noise of VCO 16

Chapter3 A Dual-Band CMOS Frequency Synthesizer for IEEE 802.11a/b/g 19
3.1 Behavior simulation 19
3.2 Circuit implementation 20
3.2.1 Phase frequency detector (PFD) 20
3.2.2 Charge pump (CP) 21
3.2.3 Voltage Controlled Oscillator (VCO) 22
3.2.3.1 Inductor 22
3.2.3.2 Varactor 23
3.2.3.3 VCO implementation 26
3.2.3.4 Doubled-frequency architecture 31
3.2.4 Frequency divider 32
3.2.5 Loop low pass filter (LPF) 36
3.2.6 Closed loop simulation 37
3.3 Experimental results 38
3.3.1 Experimental setup 38
3.3.2 Experimental results 39
3.3.2.1 VCO measurement results 40
3.3.2.2 Divider measurement results 42
3.3.2.3 Synthesizer measurement results 42
3.4 Summary 44

Chapter4 A Dual-loop Dual-Band CMOS Frequency Synthesizer for IEEE 802.11a/b/g 45
4.1 Introduction 45
4.2 Linear analysis 47
4.3 Circuit implementation 50
4.3.1 Voltage controlled oscillator (VCO) 50
4.3.2 Charge pump(CP) 52
4.3.3 Loop low pass filter (LPF) 53
4.3.4 Closed loop simulation 53
4.4 Experimental results 55
4.4.1 VCO measurement results 56
4.4.2 Synthesizer measurement results 58
4.5 Summary 60


Chapter5 An Adaptive Bandwidth Frequency Synthesizer in 0.18μm CMOS technology 61
5.1 Introduction 61
5.2 Acquisition time improvement 62
5.2.1 Lock-time 63
5.2.2 Pull-in time 63
5.2.3 A typical second order step-response characteristic 63
5.2.4 Settling-time 64
5.2.5 Reducing Tacq 65
5.3 Circuit implementation 65
5.3.1 Adaptive bandwidth controller (VCO) 66
5.3.2 Charge pump (CP) 67
5.3.3 Frequency divider 68
5.3.4 Closed loop simulation 72
5.4 Summary 74

Chapter6 Conclusion 75
Bibliography 77
[1]” A CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver with a novel RF dual-band phase shifter for WLAN 802.11a/b/g”,Banbury, D.R.; Fayyaz, N.; Safavi-Naeini, S.; Nikneshan, S.;Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE6-8 June 2004 Page(s):157 – 160

[2] “A dual-band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18-/spl mu/m CMOS transceiver for 802.11a/b/g wireless LAN”,Vavelidis, K.; Vassiliou, I.; Georgantas, T.; Yamanaka, A.; Kavadias, S.; Kamoulakos, G.; Kapnistis, C.; Kokolakis, Y.; Kyranas, A.; Merakos, P.; Bouras, I.; Bouras, S.; Plevridis, S.; Haralabidis, N.;Solid-State Circuits, IEEE Journal ofVolume 39, Issue 7, July 2004
Page(s):1180 – 1184

[3] “5-GHz and 2.4-GHz dual-band RF-transceiver for WLAN 802.11a/b/g applications”,Klepser, B.-U.; Punzenberger, M.; Ruhlicke, T.; Zannoth, M.;Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE8-10 June 2003 Page(s):37 – 40

[4] “A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN”,Zargari, M.; Terrovitis, M.; Jen, S.H.-M.; Kaczynski, B.J.; MeeLan Lee; Mack, M.P.; Mehta, S.S.; Mendis, S.; Onodera, K.; Samavati, H.; Si, W.W.; Singh, K.; Tabatabaei, A.; Weber, D.; Su, D.K.; Wooley, B.A.;Solid-State Circuits, IEEE Journal of-Volume 39, Issue 12, Dec. 2004 Page(s):2239 – 2249

[5]”A direct-conversion CMOS transceiver for the 802.11a/b/g WLAN standard utilizing a Cartesian feedback transmitter”,Perraud, L.; Recouly, M.; Pinatel, C.; Sornin, N.; Bonnot, J.-L.; Benoist, F.; Massei, M.; Gibrat, O.;Solid-State Circuits, IEEE Journal ofVolume 39, Issue 12, Dec. 2004 Page(s):2226 – 2238

[6] Supplement to IEEE standard for information technology telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band Year: 1999

[7] Supplement To IEEE Standard For Information Technology- Telecommunications And Information Exchange Between Systems- Local And Metropolitan Area Networks- Specific Requirements- Part 11: Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band Year: 2000

[8] IEEE standard for information technology- telecommunications and information exchange between systems- local and metropolitan area networks- specific requirements Part II: wireless LAN medium access control (MAC) and physical layer (PHY) specifications Year: 2003

[9] “5-GHz CMOS wireless LANs”,Lee, T.H.; Samavati, H.; Rategh, H.R.;
Microwave Theory and Techniques, IEEE Transactions on Volume 50, Issue 1, Jan. 2002 Page(s):268 – 280

[10]” A filtering technique to lower LC oscillator phase noise”,Hegazi, E.; Sjoland, H.; Abidi, A.A.;Solid-State Circuits, IEEE Journal ofVolume 36, Issue 12, Dec. 2001
Page(s):1921 – 1930

[11] “A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology”,Vaucher, C.S.; Ferencic, I.; Locher, M.; Sedvallson, S.; Voegeli, U.; Wang, Z.
Page(s): 1039-1045

[12] “Impact of clock slope on true single phase clocked (TSPC) CMOS circuits”,Larsson, P.; Svensson, C.;Solid-State Circuits, IEEE Journal of
Volume 29, Issue 6, June 1994 Page(s):723 – 726

[13] “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology”,Lam, C.; Razavi, B.;Solid-State Circuits, IEEE Journal of
Volume 35, Issue 5, May 2000 Page(s):788 – 794

[14] “A 2-V 2.3/4.6-GHz dual-band frequency synthesizer in 0.35-/spl mu/m digital CMOS process”Wei-Zen Chen; Jia-Xian Chang; Ying-Jen Hong; Meng-Tzer Wong; Chien-Liang Kuo;Solid-State Circuits, IEEE Journal ofVolume 39, Issue 1, Jan. 2004 Page(s):234 – 237

[15] “An integrated CMOS RF synthesizer for 802.11a wireless LAN”,Herzel, F.; Fischer, G.; Gustat, H.;Solid-State Circuits, IEEE Journal of
Volume 38, Issue 10, Oct. 2003 Page(s):1767 – 1770

[16] “A 2-V 900-MHz monolithic CMOS dual-loop frequency synthesizer for GSM receivers”,Yan, W.S.T.; Luong, H.C.;Solid-State Circuits, IEEE Journal of Volume 36, Issue 2, Feb. 2001 Page(s):204 – 216

[17] “A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer”,Kan, T.K.K.; Leung, G.C.T.; Luong, H.C.;Solid-State Circuits, IEEE Journal of Volume 37, Issue 8, Aug. 2002 Page(s):1012 – 1020

[18] “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop”,Tsung-Hsien Lin; Kaiser, W.J.;Solid-State Circuits, IEEE Journal of Volume 36, Issue 3, March 2001 Page(s):424 – 431

[19] “A 2.4-GHz ring-oscillator-based CMOS frequency synthesizer with a fractional divider dual-PLL architecture”,Zhinian Shu; Ka Lok Lee; Leung, B.H.;Solid-State Circuits, IEEE Journal ofVolume 39, Issue 3, March 2004 Page(s):452 - 462

[20] “A low-noise fast-lock phase-locked loop with adaptive bandwidth control”,Joonsuk Lee; Beomsup Kim;Solid-State Circuits, IEEE Journal of Volume 35, Issue 8, Aug. 2000 Page(s):1137 – 1145
[21] “An adaptive PLL tuning system architecture combining high spectral purity and fast settling time”,Vaucher, C.S.;Solid-State Circuits, IEEE Journal of Volume 35, Issue 4, April 2000 Page(s):490 – 502

[22] “Improving the acquisition time of a PLL-based, integer-N frequency synthesizer”,Ahmed, S.I.; Mason, R.D.;Circuits and Systems, 2004. ISCAS ''04. Proceedings of the 2004 International Symposium on Volume 4, 23-26 May 2004 Page(s):IV - 365-8 Vol.4

[23] “A new fast-settling gearshift adaptive PLL to extend loop bandwidth enhancement in frequency synthesizers”, Yiwu Tang; Ismail, M.; Bibyk, S.;Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on Volume 4, 26-29 May 2002 Page(s):IV-787 - IV-790 vol.4

[24] “A 250 MHz low jitter adaptive bandwidth PLL”,Lee, J.; Kim, B.;Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International 15-17 Feb. 1999 Page(s):346 – 347

[25] “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider”,Pellerano, S.; Levantino, S.; Samori, C.; Lacaita, A.L.; Solid-State Circuits, IEEE Journal of Volume 39, Issue 2, Feb. 2004 Page(s):378 – 383

[26]”RF MICROELECTRONICS”, Behzad Razavi.

[27]”The Design of CMOS Radio Frequency Integrated Circuits”, Thomas H. Lee

[28]”Design of Analog CMOS Integrated Circuits”, Behzad Razavi
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉瑞瓊(民89)。如何落實推動生命教育,教導學生熱愛生命。臺灣教育,580,54-58。
2. 楊金柳(民88)。不能NG的生命教育—談生命教育。教育資料文摘,25(6),131-136。
3. 楊仲鏞(民87)。做個生命的好管家。輔導通訊,55,22-23。
4. 傅佩榮(民89)。環繞生命教育的省思。北縣教育,33,13-17。
5. 張振成(民90)。生命教育的本質與實施。教育資料與研究,39。民94年6月11日,取自http://www.nioerar.edu.tw:82/basis3/39/a12.htm
6. 徐宗林(民90)。來自網路上的生命教育。人文及社會學科教學通訊雙月刊,12(3),16-19。
7. 林繼偉、潘正德、王裕仁(民91)。學校生命教育現況分析。中原學報,30(2),173-187。
8. 吳榮鎮(民90)。落實輔導再認識工程—生命教育。學生輔導,76,100-111。
9. 吳武雄(民88)。推展生命教育,回歸教育本質。高中教育,7,10-15。
10. 孔建國(民87)。點燃生命的火炬。輔導通訊,55,11-14。
11. 蔡明昌(民94)。關於生命教育的省思。教育資料與研究,62,126-133。
12. 鄭崇趁(民91)。生命教育的目標與策略。教育資料與研究,39。民94年6月11日,取自http://www.nioeraredu.tw:82/basis3/39/a6..
13. [21]洪懿妍 (1999)。麥當勞如何成長五十倍?天下雜誌,第217期,176-182頁。
14. [42]詹偉雄 (2002)。衝撞老霸權的創意家—ING安泰人壽潘燊昌。數位時代雙週刊,第37期,98-103頁。
15. [46]蔡蕙如 (2001)。麥當勞漢堡大學 花五百萬打造一位經理。天下雜誌,245期,100-103頁。