跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李後儒
研究生(外文):Hou-Ru Li
論文名稱:具有矽鍺P型高摻雜區的矽/矽鍺超晶格發光二極體特性研究
論文名稱(外文):Characteristic of 10 periods SLS LED with Si0.8Ge0.2 capping layer for 1.3 ~1.5 um wavelength
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:73
中文關鍵詞:超晶格發光二極體高摻雜矽鍺
外文關鍵詞:superlatticeLEDP doped capping layerSiGe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽鍺光電元件具有與矽積體化電路整合的優點,加上量子異質接面結構的長晶技術進步,因此近年來矽鍺異質接面的光電元件被廣為研究。而本論文中提出室溫操作且發光波段在1.3-1.4微米之多週期矽/矽鍺超晶格發光二極體。
在本篇論文中我們利用超高真空化學氣相沈積成長十週期的矽/矽鍺超晶格結構,並在P型高掺雜區域分別成長了矽塊材以及矽鍺塊材兩種不同的材料,分別稱作樣品A及樣品B,以探討P型高掺雜區,除了作為歐姆接點外,對於矽/矽鍺超晶格電激發光特性之影響,特別是在發光頻譜的變化。根據實驗結果,我們發現矽鍺於導帶會比矽高出△Ec,故擴散至矽鍺P側的電子會被其擋住而累積在矽與超晶格部分,而造成電子的濃度上升。另外,矽鍺於價帶亦比矽高出△Ev,因而會阻擋部份由P側注入的電洞,造成低溫下電洞主要累積在矽鍺高掺雜區及超晶格區,而只能觀察到矽鍺塊材與超晶格的光。常溫下電洞不容易被量子井及矽鍺的價帶侷限,因此受矽鍺高掺雜區影響,樣品B可以觀察到相對於樣品A強的矽發光。總和來說,矽鍺高掺雜層在低溫下可抑制矽發光而得到矽鍺塊材及超晶格的光,而在常溫下則可稍微增幅矽發光。
The advantage of the optoelectronic component of silicon germanium is fully compatible with the Si-based microelectronic chips. In addition, the progress of the growth techniques for quantum heterojunction structure is in advanced. So the heterojunction structure of silicon germanium is studied far and wide in recent years. In this thesis, the light-emitting diodes (LEDs) with multi-periods of Si/SiGe superlattice operating at room temperature for 1.3-1.4μm emission wavelength are reported.
We design a ten periods Si/SiGe superlattice structure that is grown by UHV/CVD system in this thesis, and two materials of Si and SiGe bulk are grown in P+ doped region, called sample-A and sample-B separately. Then we analyze the influences of the P+ doped region on electroluminescence characteristics, especially the electroluminescence (EL) spectra. According to experimental results, we find that because conduction band of SiGe is higher than that of Si, the electrons that diffuse to P side will be blocked and accumulate in the region of Si buffer and superlattice, and causes the electrons density grow up. Besides, the valence band of SiGe is also higher than Si, so that will block a part of injection holes, causes holes accumulate in the regions of P+ doped SiGe and superlattice at low temperature, and the light emitting from SiGe bulk and superlattice only can be observed. Holes aren’t easily confined in superlattice and the valence band of the SiGe bulk at room temperature, so we can observe stronger Si light emitting in sample-B than sample-A by the effect of the P+ doped SiGe region. Conclusively, the P+ doped SiGe layer can suppress the Si light emitting so we can observe the light emitting from SiGe bulk and superlattice at low temperature, and it can enhance the Si light emitting at room temperature.
Acknowledgement...........................................1
Chinese Abstract.......................................2
Abstract.............................................3
contents...............................................4
Chapter 1
Introduction………………………………………….7
References…………………………………………………………… 12
Chapter 2
Background of Si/SiGe Type II band alignment
Superlattice and Light Emission……………………14
2.1 Type II Band Alignment of Si/SiGe……….………..……...……14
2.1.1 Si1-xGex Strained Layer ………………………………………….14
2.1.2 Bandgap and Band alignment of Si/SiGe Heterostructure………18
2.1.2 Si/SiGe Mutiple Quantum Well and Superlattice Structure……..22
2.2 The Essential Principle of Light-Emitting Diode ………………….24
2.2.1 Eletroluminescence …………………………………………...…24
2.2.2 Light Emitting Diode ……………………………………………24
References ……………………………………………………………..28

Chapter 3
Experimental Procedures of Fabricating LED
Devices and Measurement Instrument Setup….…29
3.1 Fabrication Processes…………………………..……………..…29
3.2 The procedure of Fabrication Processes…………………....….39
3.3 Instruments Setup for Measurements……………………….41
3.2.1 Current-Voltage (I-V)………………………………………….41
3.2.2 Luminescence Intensity (L-I curves)…………………………..41
3.2.3 Electroluminescence (EL) Spectrum…………………………..42
References ………………………………………………..…………44
Chapter 4
Light Emission Diodes Made by Si/SiGe
Superlattice with Different Period Number……….45
4.1 Sample Preparation………………………………………………..45
4.2 Current-Voltage (I-V) Characteristics…………………………….49
4.3 Current-dependent Electroluminescence (EL) Spectra……………50
4.3.1 Room-Temperature (300K) EL Spectra…………………………50
4.3.2 Low-Temperature (30K) EL Spectra…………………………….51
4.4 L-I Characteristics……………………………………………..….54
4.5 Temperature-dependence of Integral Intensity……………………58
References……………………………………………………………..61
Chapter 5
Discussion…………………………………………….62
5.1 The discussion of the data from various aspects…..62
5.2 Summary…………………………………………………………..70
References……………………………………………………………..71
Chapter 6
Conclusion and Future Work……………...………..72
References
CHAP1
[1] A. Splett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, J.-J. Herzog, and H. Presting, IEEE Photonics Technol. Lett. 6, 59 (1994).
[2] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, C. M. Liu, M.-J. Tsai, and C. W. Liu, Tech. Dig. – Int. Electron Devices Meet. 297 (2002).
[3] E. Kasper, in “Physics and Applications of Quantum Wells and Superlattices”, edited by E. E. Mendez and K.von Klitzing, Nato ASI Series B (Plenum,New York,1987), Vol. 170, p. 101.
[4] Wiley, “Semiconductor Devices Physics and Technology”, edited by Sze., 1997.
[5] J. C. Campbell, in “Germanium Silicon :Physics and Materials : Optoelectronics in Silicon and Germanium Silicon”, edited by R. Hull and J. C. Bean (Academic,San Diego,1999) p.347.
[6] G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
[7] J. Stimmer, A. Reittinger, J. F. Nu tzel, G. Abstreiter, H. Holzbrecher, and C. Buchal, Appl. Phys. Lett. 68, 3290 (1996).
[8] F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 3242 (2002).
[9] H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter, and H. G. Grimmeiss, Semicond. Sci. Technol. 7, 127 (1992).
[10] D. J. Robbins, P. Calcott, and W. Y. Leong, Appl. Phys. Lett. 59, 1350, (1991).
[11] Q. Mi, X. Xiao, J. C. Sturm, L. C. Lenchyshyn, and M. L. W. Thewalt, Appl. Phys. Lett. 60, 3177, (1992).


[12] S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, Appl. Phys. Lett. 63, 967, (1993).
[13] H. Presting, T. Zinke, A. Splett, H. Kibbel, and M. Jaros, Appl. Phys. Lett. 69, 2376, (1996).
[14] Chih-Hsiung Hsu,”Ge Quantum-dot LED for 1.3-1.5 μm Emission Wacelength”, NTU, 2003.
[15] R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lu¨th, Appl. Phys. Lett. 66, 445, (1995).
[16] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Mu¨ck, J. Appl. Phys. 87, 7275, (2000).
[17] T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, Appl. Phys. Lett. 77, 1822, (2000).
[18] M. Stoffel, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 82, 3236, (2003).
[19] Kuan-Ting Chen,”Electroluminescence Characteristics of Si/SiGe Superlattice ” , NTU, 2004
CHAP2
[1] R. People,“Physical and Applications of GexSi1-x/Si Strained-Layer Heterostructure”, IEEE J. Quantum Electro, vol. QE-22, pp. 1696, 1986.
[2] J. H. van der Merwe,“Crystal interfaces. PartⅡ. Finite Overgrowths”, Appl. Phys., vol. 34, pp. 123, 1963.
[3] Shih-Chin Lee,”Muti-Delta-doped SiGe Channel p-MESFET”, NCKU, 2002.
[4] Ta-Yi Yang, “Study of Period Number Effect in the Superlattice Infrared Photodetector”, NTU, 2001.
[5] R. People and S. A. Jackson,“Structurally Induced States from Strain and Confinement”, Semiconductors and Semimetals, vol. 32, p. 119, 1990.
[6] R. Hull and J. C. Bean,”Germanium Silicon: Physics and Materials”, Semiconductors and Semimetals, vol. 56
[7] M. L. W. Thewalt and D.A. Harrison,“Type II Band Alignment in Si1-xGex /Si(001) Quantum Wells: The Ubiquitous Type I Luminescence Results from Band Bending”, Physical review letters vol 79, number2, 1997
[8] Zhang-Ding Zhang, “Characterization and Light Emission Applications of Si and SiGe Superlattices Grown by Ultrahigh Vacuum Chemical Vapor Deposition”, NCTU, 1994.
[9] “Fundamentals of photonics” edited by Saleh and Teich, p455.
[10] “Optoelectronics” edited by Wilson and Hawkes, p141.
[11] ”Luminescence and The Light Emitting Diode” edited by E.W. Williams
CHAP3
[1]Chih-Hsiung Hsu,”Ge Quantum-dot LED for 1.3-1.5 μm Emission Wacelength”, NTU, 2003.
[2] D. K. Navak, K. Kamjoo, J. S. ParK, K. L. Wang and J. C. Woo, Appl. Phys. Lett. 57, 369 (1990).
[3] “Thin Film Process”, edited by J. L. Vossen and W. Kern (New York: Academic Press, 1978)
[4] H. Robbins and B. Schwartz, J. Electrochem. Soc. 106, 505 (1959).
[5] K. E. Bean, IEEE Trans. Electron. Devices 25, 1185 (1987).
[6] H. Robbins and B. Schwartz, J. Electrochem. Soc. 107, 108 (1960).
[7] M.Stoffel, U. Denker, and O. G. Schmidt, Applied Physics Letters, 82, 3236, (2003).
CHAP4
[1] M.Stoffel, U. Denker, and O. G. Schmidt, Applied Physics Letters, 82, 3236,(2003)
[2] M. W. Dashiell, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 79, 2261 (2001)
[3] O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000)
[4] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Mück, J. Appl. Phys., 87, 7275, (2000)
[5] Z. Pei, P.S. Chen, L.S Lai, S.C. Lu, M.-J. Tsai, W.H. Chang, W.,Y. Chen, A.T. Chou, and T.M. Hsu, "Room temperature 1.3 and 1.5 um Electroluminescence from Si/Ge Quantum Dots", First International SiGe Technology and Device Meeting (ISTDM 2003)
[6] L. Vescan, O. Chrétien, T. Stoica, E. Mateeva, and A. Mück, Materials Science in Semiconductor Processing, 3, 383, (2000)
[7] O. Chrétien, T. Stoica, D. Dentel, E. Mateeva, and L. Vescan, Semicond. Sci. Technol., 15, 920, (2000)
[8] Jacques I. Pankove, “Optical Processes in Semiconductors”.
CHAP5
[1] “Optoelectronics” edited by Wilson and Hawkes.
[2] Chen-Kuan Tin,” Si/SiGe superlattice LED for 1.3-1.5 μm Emission Wavelength”, NTU, 2004
[3] “Photoluminescence in tensile-strained Si type-II quantum wells on bulk single-crystal SiGe substrates” edited by S. R Sheng, N. L. Rowell
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊