跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹盛煌
研究生(外文):Sheng-Huang Tsao
論文名稱:應用於光纖通訊之時脈資料回復電路
論文名稱(外文):Clock and Data Recovery Circuit for Optic Fiber Communication
指導教授:李泰成
指導教授(外文):Tai-Cheng Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:81
中文關鍵詞:時脈資料回復電路
外文關鍵詞:CDR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
這論文包含五個章節。最主要這論文的方向和目的是去分析和設計以及實現一個高速的資料時脈回復電路,且此電路是應用於光纖通訊接收器,且切實的使用了積體化、低成本、低功率的互補金氧半電容電晶體製程去實現它。
這本論文主要環繞在針對兩種不同型態的資料時脈回復電路去做分析其原理並用實際電路去實現它。這兩種電路並都使用0.35-μm互補金氧半電容電晶體製程去實現,在低成本的製程實現其高速應用。這兩種資料時脈回復電路主要的差別在於其相位偵測器型態的差別,例如:線性的相位偵測器、非線性的相位偵測器。並且在電路的設計分析上會去討論這兩者應用於電路上的差別。

第二章的部分,我們會針對資料時脈回復電路去分析其設計原理以及在設計資料時脈回復電路中所必須克服的一些關鍵元件,例如:相位偵測器、頻率偵測器以及壓控震盪器。和傳統鎖相迴路不同的地方在於此資料時脈回復電路操作於不回復至零的隨機序列資料,有別於週期性資料,在電路設計上不同於傳統鎖相迴路。

在第三章中,介紹的是第一個實現的資料時脈回復電路,此電路是設計成能操作於1.25-Gb/s 的隨機資料,在此電路中,使用的架構為雙迴路系統的資料時脈回復電路,其特點在於不需要額外的參考時脈耗損,也就是此電路能夠判別頻率的差距,也就是使用了鎖頻迴路去做資料頻率的偵測。此外,這邊應用的相位偵測器為線性的相位偵測器且使用了兩階層的壓控震盪器。

第四章則是介紹了非線性資料時脈回復電路,也是使用0.35-μm互補金氧半電容電晶體製程去實現。在此電路中使用了另一種型態的壓控震盪器去實現高頻且有良好的相位雜訊表現,能夠達到最高為1.60-Gb/s且最低為1050-Mb/s 的涵蓋範圍。

最後,則是對這兩種型態的資料時脈回復電路做總結和討論。
This thesis contains five chapters. The research objective of this thesis is to analyze, design, and implement high-speed CDR circuits for optical fiber receivers that can be readily implemented in an integrated, low-cost, low-power CMOS technology. Our primary contributions to this research include the design methodology and implementation of two CDR circuits fabricated in both CMOS 0.35-μm technologies using linear phase detector (LPD) and binary phase detector (BPD) and we compare and analysis the difference of the two CDR circuits.


Chapter 2, we describe the theorem of clock and data recovery (CDR) circuit. Several architectures and some building blocks of CDR are discussed, including phase detector (PD), frequency detector (FD) for random data, and voltage-controlled-oscillator (VCO).
.
The first CDR circuit in CMOS 0.35-μm technology to support a data rate of 1.25-Gb/s is described in Chapter 3. The frequency lock loop (FLL) without a reference clock is integrated in the CDR. We will discuss the architecture of the CDR based on a phase-locked loop. The building blocks for system are discussed. The building blocks are comprised of a two-stage ring oscillator, a linear phase detector (LPD), and a full-rate frequency detector.

Chapter 4 presents the bang-bang CDR fabricated in CMOS 0.35-μm technology to support a data rate from 1050-Mb/s to 1.60-Gb/s with a phase-locked loop (PLL) for frequency acquisition. In this chapter, we also present the analysis of bang-bang loop and some concepts of PLL.

Finally, conclusions and discussions are given in Chapter 5.
Table of Contents I
List of Figures IV
List of Tables VIII


Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 2

Chapter 2 Clock and Data Recovery System 4
2.1 General Considerations 5
2.1.1 Open-Loop CDR Architectures 5
2.1.2 Phase-Locking CDR Architectures 7
2.2 CDR Architectures 9
2.2.1 Full-Rate and Half-rate Architectures 9
2.2.2 Referenceless and Referenced CDR Architectures 10
2.3 Clock and Data Recovery Building Block 14
2.3.1 Frequency Acquisition 14
2.3.2 Voltage-Controlled Oscillator 16
2.3.3 Phase Detector 21

Chapter 3 A Linear-Type Clock and Data Recovery Design
and Implementation 27
3.1 Motivation 27
3.2 Linear Model Analysis of CDR 27
3.2.1 System Considerations 27
3.2.2 CDR Parameter Design 29
3.3 Architecture 31
3.4 Circuit Design and Simulation Result 32
3.4.1 Preamplifier 33
3.4.2 Phase Detector (PD) 34
3.4.3 Charge Pump (CP) 42
3.4.4 Frequency Detector (FD) 44
3.4.5 Voltage-Controlled Oscillator (VCO) 45
3.4.6 Loop Filter (LPF) 50
3.5 System Simulation Results 53
3.5.1 Behavioral Simulation Results 54
3.5.2 Transistor-Level Simulation Results 56
3.6 Measurement 58
3.6.1 Input/Output Interface 58
3.6.2 Test Setup 60
3.6.3 Experiment Result 62
Chapter 4 A Binary-Type Clock and Data Recovery Design
and Implementation 65
4.1 Motivation 65
4.2 Architecture 66
4.3 Circuit Design and Simulation Result 67
4.3.1 Phase Detector (PD) 67
4.3.2 Voltage-Controlled Oscillator (VCO) 69
4.4 Measurement 72
4.4.1 Test Setup 73
4.4.2 Experiment Result 74
Chapter 5 Conclusion 79


Bibliography 80
[1]Behzad Razavi, "Design of Integrated Circuits for Optical Communications," 1st Ed., McGraw-Hill, 2003.
[2]Simon Haykin, "Communication Systems," 4th Ed., John Wiley & Sons, 2001.
[3]J. Winters and R. Gitlin, "Electrical Signal Processing Techniques in Long-Haul Fiber Optic Systems," IEEE Transactions on Communication, vol. 38, pp. 1439-53, Sept. 1990.
[4]Govind P. Agrawal, "Fiber-Optic Communication Systems," 3rd Ed., John Wiley & Sons, 2002.
[5]Kamran Azadet, et al., "Equalization and FEC Techniques for Optical Transcervers," IEEE Journal of Solid-State Circuits, vol. 37, pp. 317-327, Mar. 2002.
[6] H. Kim, J. Bauman, “A 12 GHz 30db Modular BiCMOS Limiting Amplifier for 10 Gb SONET Receiver,” ISSCC Digest of Technical Paper, vol. 43, pp.160-161, Feb. 2000.
[7] Behzad Razavi, "Prospects of CMOS Technology for High-Speed Optical Communication Circuits," IEEE Journal of Solid-State Circuits, vol. 37, pp. 1135-45, Sept. 2002.
[8] A. W. Buchwald, "Design of Integrated Fiber-Optic Receivers Using Heterojunction Bipolar Transistors," Ph.D Thesis, University of California, Los Angeles, Jan. 1993.
[9] J. Savoj. B. Razavi, "A 10-Gb/s CMOS Clock and Data Recovery Circuit," Digest of Symposium on VLSI Circuits, pp. 136-139, June 2000.
[10] M. Rau. T. Oberst, R. Lares, A. Rothermel, R. Schweer, and N. Menoux, "Clock/Data Recovery PLL Using Half-Frequency Clock," IEEE J. Solid-Stata Circuits, vol. 32, no. 7, pp. 1156-1159, July 1997.
[11] J. C. Scheytt, G. Hanke, and U. Langmann, "A 0.155, 0.622, and 2.488 Gb/s Automatic Bit Rate Selecting Clock and Data Recovery IC for Bit Rate Transparent SDH System," International Solid-State Circuits Conference Dig. Of Tech. Papers, pp. 348-349, Feb. 1999.

[12] Chin-Chun Tang, Chia-Hsin Wu, and Shen-Iuan Liu, "Miniature 3D inductors in standard CMOS process," IEEE Journal of Solid-State Circuits, vol. 37, pp. 471-480, April 2002.
[13] D. Richman, “Color-Carrier Reference Phase Synchronization Accuracy in NTSC Color Television,” Proc. IRE, vol. 42, pp. 106-133, Jan 1954.
[14] J. Savoj, B. Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit,” Digest of Symposium on VLSI Circuits , pp. 136-139, June 2000.
[15] S. B. Anand, “High Speed Clock and Data Recovery Circuits For Random Non-Return-to-Zero Data,” Ph.D. Thesis, University of California, Los Angeles, 2001.
[16] H. Wang, and R. Nottenburg, “A 1Gb/s CMOS Clock and Data Recovery Circuit”, International Solid-State Circuits Conference, WA. 20.5, 1999.
[17] S. B. Anand, B. Razavi, “A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZ Data”, IEEE Journal of Solid-State Circuit, vol. 36, no. 3, pp. 432-439, March 2001.
[18] D. Richman, “Color-carrier reference phase synchronization accuracy in NTSC color television”, Proc. IRE, vol.42, pp. 106-133, Jan. 1954.
[19] J. A. Belliso, “A new phase-locked timing recovery method for digital regenerators”, IEEE Int. Conf. Rec., vol. 1, pp. 10-17, June 1976.
[20] C. Y. Yang, “Design of Clock Synchronizers and Frequency Synthesizers”, Ph.D. Thesis, Dpt. Of Electrical Engineering, National Taiwan University, June 1999.
[21] Myung-Woon, Hwang, John-Tae Hwang, Gyu-Hyeong Cho, “Design of High Speed CMOS prescaler,”The Second IEEE Asia Pacific Conference on ASICs, pp.87-90, Aug 2000.
[22] Chan-Geun Yoon, Sang-Yun Lee, Choong-Woong Lee, “Digital Logic Implementation of the Quadricorrelators for Frequency detector,” MWSCS, pp.0-0, . 1994.
[23] William Shing Tak Yan, Howard Cam Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator,”IEEE Transactions on Circuits and System, vol.48, pp.216-221, Feb 2001.
[24] F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Trans. Circuit and Systems, Part II, vol. 46, pp. 56-62, Jan. 1999.
[25] C. K. Wei, “Mostly Analog CMOS 300MHz High-Performance Detector and Timing Recovery Circuits for the Magnetic Recording Channel,” Ph.D. Thesis, University of California, Los Angeles, 2000.

[26] J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letters, vol. 11, pp.541-542, Oct. 1975.
[27] B. Kim, “High speed clock recovery in VLSI using hybrid analog/digital techniques,” Ph.D. dissertation, Univ. of California, Berkeley, Memo. UCB/ERF M90/50, June 1990.
[28] B. Kim and P. R. Gray, “Phase noise analysis for ring oscillator VCO’s,” to be submitted for publication.
[29] Chan-Hong Park and Beomsup Kim, “A Low-Noise, 900-MHz VCO in 0.6-µm CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 5, MAY 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文