跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳士元
研究生(外文):Shih-Yuan Chen
論文名稱:無線通訊應用之共面波導饋入開槽天線之設計
論文名稱(外文):Design of Coplanar Waveguide-Fed Slot Antennas for Wireless Applications
指導教授:許博文許博文引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:150
中文關鍵詞:共面波導開槽天線
外文關鍵詞:coplanar waveguidesslot antennas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一系列具有不同阻抗及輻射特性之共面波導饋入開槽天線,其中包含三種開槽天線以及兩種開槽陣列天線,可分別應用於不同的無線通訊系統中。
在開槽天線方面,以共面波導饋入之開槽偶極天線為基礎,論文中介紹了三種新型的開槽天線以滿足不同的系統需求,包含雙頻、寬頻與微小化之設計。首先,在第二章中提出雙頻之放射狀開槽天線,藉由提高中間開槽對的長度,可形成兩個共振頻率,改變開槽間的夾角可調整共振頻率比,其範圍介於1.3與2.1之間,並經實驗佐證,最後將量測得到之資料整理成設計曲線。接著,在第三章中結合共面波導饋入之寬頻領結形開槽天線與延遲開槽線段,並將領結形開槽之左半或右半邊翻轉,得到三個改良型設計,其中最大的工作頻寬可提昇至約為領結形開槽天線的兩倍。最後,在第四章中提出一微小化之電容性折疊式開槽天線,並探討有限大小的接地面對該天線之輸入阻抗的影響,以利縮小天線面積。
在開槽陣列天線方面,第五章中提出終端開路之城垛形開槽陣列天線,將城垛形開槽線之終端以開路取代原本短路的設計,可提高天線的輻射效率及增益,改善遠場輻射場型,同時縮小天線面積,此外,該天線結構簡單,極易設計成一維或二維之陣列天線。第六章中則提出一寬頻之號角形開槽陣列天線,利用號角形開槽本身的寬頻特性,適當地設計輻射單元間的饋入傳輸線網路,即可大幅提昇其工作頻寬及天線增益。
In this dissertation, a new category of coplanar waveguide (CPW)-fed slot antennas with various impedance and radiation characteristics, including three slot antennas and two slot array designs, is presented. These antennas can find applications in a variety of wireless communication systems.
Based on the CPW-fed slot dipole antenna, three novel designs of CPW-fed slot antennas are proposed to satisfy different system requirements, including the dual-band and wideband operations and the miniaturization. First of all, in Chapter 2, the CPW-fed radial slot antenna is developed for dual-frequency operation. By increasing the length of the central slot pair, an additional lower resonant frequency can be obtained. Various frequency ratios, within the range of about 1.3 to 2.1, of the two resonant frequencies can be achieved by varying the included angle between the radial slots, and they are verified experimentally. Design curves are last plotted according to the measurement results. Secondly, in Chapter 3, the flip-over of one half of the bow-tie slot and the insertion of the delay slotline sections into the CPW-fed bow-tie slot antenna with broadband essence results in three modified designs, of which the maximum operation bandwidth can be increased to be twice that of the original bow-tie slot antenna. In Chapter 4, the CPW-fed capacitive folded-slot antenna and its miniaturization are presented. To facilitate the miniaturization, the effect of the finite size of the ground plane on the input matching condition is discussed and verified experimentally.
For the CPW-fed slot array antennas, the open-ended rampart slot array antenna is proposed in Chapter 5. The shunt rampart slotline pairs are terminated in open circuits instead of short ones so as to increase the antenna efficiency and gain, improve the radiation patterns, and simultaneously reduce the antenna size. Furthermore, the antenna structure is simple and can easily be designed in the form of linear or planar arrays. Finally, in Chapter 6, the CPW-fed horn-shaped slot array antenna is presented to possess a wider operation bandwidth, which results mainly from the inherently broadband feature of the radiating horn-shaped slot elements. By properly placing the radiating slots and carefully designing the feeding network, the peak antenna gain of the horn-shaped slot array antenna can be increased enormously without influencing the wideband characteristics.
摘要 1
Abstract 3
Contents 5
List of Tables 9
List of Figures 11
Chapter 1 Introduction 15
1.1 Research Motivation 15
1.2 Literature Survey 17
1.3 General Concepts of CPW-Fed Slot Dipole Antennas 20
1.4 Contribution 22
1.5 Chapter Outlines 24
Chapter 2 Dual-Band Radial Slot Antenna 29
2.1 Introduction 29
2.2 Antenna Configuration and Design 31
2.3 Simulation and Measurement Results 34
2.4 Summary 36
Chapter 3 Wideband Modified Bow-Tie Slot Antennas 51
3.1 Introduction 52
3.2 Antenna Configuration and Design 53
3.2.1 CPW-Fed Bow-Tie Slot Antenna 53
3.2.2 CPW-Fed Modified Bow-Tie Slot Antennas 56
3.2.3 Mutual Coupling Effect 58
3.3 Simulation and Measurement Results 61
3.4 Summary 63
Chapter 4 Miniature Folded-Slot Antenna 85
4.1 Introduction 85
4.2 Antenna Configuration and Design 86
4.3 Miniaturization and Finite Ground Plane Size 87
4.4 Simulation and Measurement Results 89
4.5 Summary 90
Chapter 5 Open-Ended Rampart Slot Array Antenna 99
5.1 Introduction 100
5.2 Antenna Configuration and Design 100
5.2.1 Open-Ended Linear Rampart Slot Array Antenna 101
5.2.2 Open-Ended Planar Rampart Slot Array Antenna 102
5.3 Simulation and Measurement Results 104
5.3.1 Open-Ended Linear Rampart Slot Array Antenna 104
5.3.2 Open-Ended Planar Rampart Slot Array Antenna 105
5.4 Summary 106
Chapter 6 Wideband Horn-Shaped Slot Array Antenna 121
6.1 Introduction 121
6.2 Antenna Configuration and Design 123
6.3 Simulation and Measurement Results 124
6.4 Summary 125
Chapter 7 Conclusion 135
7.1 Summary 135
7.2 Future Work 138
References 141
[1]C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
[2]A. K. Sharma and T. Itoh (Editors), Special Issue on Modeling and Design of Coplanar Monolithic Microwave and Millimeter-Wave Integrated Circuits, IEEE Trans. Microwave Theory Tech., vol. MTT-41, no. 9, Sep. 1993.
[3]X. Ding, and A. F. Jacob, “CPW-fed slot antenna with wide radiating apertures,” IEE Proc.-Microw. Antennas Propagat., vol. 145, no. 1, pp. 104-108, Feb. 1998.
[4]H.-D. Chen, “Broadband CPW-fed square slot antennas with a widened tuning stub,” IEEE Trans. Antennas Propagat., vol. 51, no. 8, pp. 1982-1986, Aug. 2003.
[5]J.-Y. Chiou, J.-Y. Sze, and K.-L. Wong, “A broad-band CPW-fed strip-loaded square slot antenna,” IEEE Trans. Antennas Propagat., vol. 51, no. 4, pp. 719-721, Apr. 2003.
[6]R. Chair, A. A. Kishk, K.-F. Lee, “Ultrawide-band coplanar waveguide-fed rectangular slot antenna,” IEEE Antennas and Wireless Propagat. Lett., vol. 3, pp. 227-229, 2004.
[7]A. U. Bhobe, C. L. Holloway, M. Piket-May, and R. Hall, “Wide-band slot antennas with CPW feed lines: hybrid and log-periodic designs,” IEEE Trans. Antennas Propagat., vol. 52, no. 10, pp. 2545-2554, Oct. 2004.
[8]G. P. Gauthier, S. Raman, and G. M. Rebeiz, “A 90-100 GHz double-folded slot antenna,” IEEE Trans. Antennas Propagat., vol. 47, no. 6, pp. 1120-1122, June 1999.
[9]E. A. Soliman, S. Brebels, P. Delmotte, G. A. E. Vandenbosch, and E. Beyne, “Bow-tie slot antenna fed by CPW,” Electron. Lett., vol. 35, no. 7, pp. 514-515, Apr. 1999.
[10]I. Linardou, C. Misliaccio, J. M. Laheurte, and A. Papiernik, “Twin Vivaldi antenna fed by coplanar waveguide,” Electron. Lett., vol. 33, no. 22, pp. 1835-1837, Oct. 1997.
[11]M. A. P. Lazaro and R. Judaschke, “A 150-GHz CPW-fed tapered-slot antenna,” IEEE Microw. Wireless Components Lett., vol. 14, no. 2, pp. 62-64, Feb. 2004.
[12]D. Llorens, P. Otero, and C. Camacho-Penalosa, “Dual-band, single CPW port, planar-slot antenna,” IEEE Trans. Antennas Propagat., vol. 51, no. 1, pp. 137-139, Jan. 2003.
[13]J.-Y. Sze, K.-L. Wong, and C.-C. Huang, “Coplanar waveguide-fed square slot antenna for broadband circularly polarized radiation,” IEEE Trans. Antennas Propagat., vol. 51, no. 8, pp. 2141-2144, Aug. 2003.
[14]X.-C. Lin and L.-T. Wang, “A broadband CPW-fed loop slot antenna with harmonic control,” IEEE Antennas and Wireless Propagat. Lett., vol. 2, pp. 323-325, 2003.
[15]H. Kobayashi and Y. Yasuoka, “Slot-array antennas fed by coplanar waveguide for millimeter-wave radiation,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 6, pp. 800-805, June 1998.
[16]T.-F. Huang, S.-W. Lu, and P. Hsu, “Analysis and design of coplanar waveguide-fed slot antenna array,” IEEE Trans. Antennas Propagat., vol. 47, no. 10, pp. 1560-1565, Oct. 1999.
[17]M. Qiu, M.Simcoe, and G. V. Eleftheriades, “High-gain meanderless slot arrays on electrically thick substrates at millimeter-wave frequencies,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 2, pp. 517-528, Feb. 2002.
[18]A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propagat., vol. 50, no. 11, pp. 1494-1504, Nov. 2002.
[19]S. Sierra-Garcia and J.-J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propagat., vol. 47, no. 1, pp. 58-64, Jan. 1999.
[20]E. A. Soliman, S. Brebels, G. Vandenbosch, and E. Beyne, “X-band brick wall antenna fed by CPW,” Electron. Lett., vol. 34, no. 9, pp. 836-838, Apr. 1998.
[21]S. A. Long and M. D. Walton, “A dual-frequency stacked circular-disc antenna,” IEEE Trans. Antennas Propagat., vol. AP-27, no. 2, pp. 270-273, Mar. 1979.
[22]B.-F. Wang and Y.-T. Lo, “Microstrip antennas for dual-frequency operation,” IEEE Trans. Antennas Propagat., vol. AP-32, no. 9, pp. 938-943, Sep. 1984.
[23]W. F. Richards, S. E. Davidson, and S. A. Long, “Dual-band reactively loaded microstrip antenna,” IEEE Trans. Antennas Propagat., vol. AP-33, no. 5, pp. 556-561, May 1985.
[24]S.-C. Pan and K.-L. Wong, “Dual-frequency triangular microstrip antenna with a shorting pin,” IEEE Trans. Antennas Propagat., vol. 45, no. 12, pp. 1889-1891, Dec. 1997.
[25]S.-C. Gao, L.-W. Li, T.-S. Yeo, and M.-S. Leong, “Small dual-frequency microstrip antennas,” IEEE Trans. Vehicular Technology, vol. 51, no. 1, pp. 28-36, Jan. 2002.
[26]T. Kashiwa, N. Yoshida, and I. Fukai, “Analysis of radiation characteristics of planar inverted-F type antenna on conductive body of hand-held transceiver by spatial network method,” Electron. Lett., vol. 25, no. 16, pp. 1044-1045, Aug. 1989.
[27]C. R. Rowell and R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handsets,” IEEE Trans. Antennas Propagat., vol. 45, no. 5, pp. 837-842, May 1997.
[28]Z.-D. Liu, P. S. Hall, and D. Wake, “Dual-frequency planar inverted-F antenna,” IEEE Trans. Antennas Propagat., vol. 45, no. 10, pp. 1451-1458, Oct. 1997.
[29]J. A. Navarro and K. Chang, Integrated Active Antennas and Spatial Power Combining, New York: Wiley, 1996.
[30]H. Tehrani and K. Chang, “Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates,” IEEE Trans. Antennas Propagat., vol. 50, no. 9, pp. 1299-1308, Sep. 2002.
[31]W.-S. Chen and K.-L. Wong, “A dual-frequency coplanar waveguide-fed slot antenna,” Microwave Opt. Technol. Lett., vol. 25, no. 3, pp. 226-228, May 2000.
[32]D. S. Filipovic and J. L. Volakis, “Novel slot spiral antenna designs for dual-band/multiband operation,” IEEE Trans. Antennas Propagat., vol. 51, no. 3, pp. 430-440, Mar. 2003.
[33]A. K.-Y. Lai, A. L. Sinopoli, and W. D. Burnside, “A novel antenna for ultra-wide-band applications,” IEEE Trans. Antennas Propagat., vol. 40, no. 7, pp. 755-760, July 1992.
[34]J. M. Johnson and Y. Rahmat-Samii, “The tab monopole,” IEEE Trans. Antennas Propagat., vol. 45, no. 1, pp. 187-188, Jan. 1997.
[35]S.-W. Lu, T.-F. Huang, and P. Hsu, “CPW-fed slot-loop coupled patch antenna on narrow substrate,” Electron. Lett., vol. 35, no. 9, pp. 682-683, Apr. 1999.
[36]Y.-W. Jang, “Broadband cross-shaped microstrip-fed slot antenna,” Electron. Lett., vol. 36, no. 25, pp. 2056-2057, Dec. 2000.
[37]N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Trans. Antennas Propagat., vol. 50, no. 8, pp. 1158-1160, Aug. 2002.
[38]M. J. Ammann and Z.-N. Chen, “A wide-band shorted planar monopole with bevel,” IEEE Trans. Antennas Propagat., vol. 51, no. 4, pp. 901-903, Apr. 2003.
[39]R.-B. Hwang, “A broadband CPW-fed T-shaped antenna for wireless communications,” IEE Proc.-Microw. Antennas Propagat., vol. 151, no. 6, pp. 537-543, Dec. 2004.
[40]T.-G. Ma and S.-K. Jeng, “Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios,” IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 1194-1202, Mar. 2005.
[41]S. Uysal, M.-S. Leong, and C.-H. Ng, “Bowtie patch antennas and simple arrays for wireless indoor communications,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 6, pp. 738-745, June 1999.
[42]D. Mirshekar-Syahkal and D. Wake, “Bow-tie antennas on high dielectric substrates for MMIC and OEIC applications at millimetre-wave frequencies,” Electron. Lett., vol. 31, no. 24, pp. 2060-2061, Nov. 1995.
[43]Y.-D. Lin and S.-N. Tsai, “Coplanar waveguide-fed uniplanar bow-tie antenna,” IEEE Trans. Antennas Propagat., vol. 45, no. 2, pp. 305-306, Feb. 1997.
[44]Y.-D. Lin and S.-N. Tsai, “Analysis and design of broadside-coupled striplines-fed bow-tie antennas,” IEEE Trans. Antennas Propagat., vol. 46, no. 3, pp. 459-460, Mar. 1998.
[45]Z.-N. Chen, “Impedance characteristics of planar bow-tie-like monopole antennas,” Electron. Lett., vol. 36, no. 13, pp. 1100-1101, June 2000.
[46]B. G. Duffley, G. A. Morin, M. Mikavica, and Y. M. M. Antar, “A wide-band printed double-sided dipole array,” IEEE Trans. Antennas Propagat., vol. 52, no. 2, pp. 628-631, Feb. 2004.
[47]K. Kiminami, A. Hirata, and T. Shiozawa, “Double-sided printed bow-tie antenna for UWB communications,” IEEE Antennas and Wireless Propagat. Lett., vol. 3, pp. 152-153, 2004.
[48]J.-F. Huang and C.-W. Kuo, “CPW-fed bow-tie slot antenna,” Microwave Opt. Technol. Lett., vol. 19, no. 5, pp. 358-360, Dec. 1998.
[49]C.-H. Ho, L. Fan, and K. Chang, “Experimental investigations of CPW-slotline transitions for uniplanar microwave integrated circuits,” in IEEE MTT-S Int. Symp. Dig., vol. 2, no. 6, pp. 877-880, June 1993.
[50]B. Strassner and K. Chang, “Integrated antenna system for wireless RFID tag in monitoring oil drill pipe,” in IEEE AP-S Int. Symp. Dig., vol.1, pp. 208-211, June 2003.
[51]P. R. Foster and R. A. Burberry, “Antenna problems in RFID systems,” IEE Colloquium on RFID Technology, no. 123, pp. 3/1-3/5, Oct. 1999.
[52]G. Marrocco, “Gain-optimized self-resonant meander line antennas for RFID applications,” IEEE Antennas and Wireless Propagat. Lett., vol. 2, pp. 302-305, 2003.
[53]X.-H. Yang and W.-X. Zhang, “Coplanar waveguide antenna arrays for MIC/MMIC at millimetre wave frequencies,” Electron. Lett., vol. 26, no. 18, pp. 1464-1465, Aug. 1990.
[54]S.-Y. Chen and P. Hsu, “Rampart slot array fed by coplanar waveguide,” in Proc. 2002 Asia-Pacific Microwave Conference, vol. 2, pp. 1286-1287, Nov. 2002.
[55]B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer’s Companion, IEEE Press, New York, 1999.
[56]IEEE 802.11, “Wireless access method and physical layer specifications,” New York, Sep. 1994.
[57]T. Wilkinson, T. Phipps, and S. Barton, “A report on HIPERLAN standardization,” Int. J. Wireless Inform. Networks, vol. 2, no. 2, pp. 99-119, 1995.
[58]Draft supplement to standard, part II: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High speed physical layer in the 5 GHz band, Tech. Rep. P802.11a/D7.0, July 1999.
[59]ETSI, Broadband radio access networks (BRAN); HIPERLAN type 2 technical specification, physical layer (PHY), Tech. Rep. DTS/BRAN-0 023 003 V0.k, Oct. 1999.
[60]W. Diels, K. Vaesen, P. Wambacq, S. Donnay, W. De Raedt, M. Engels, and I. Bolsens, “Single-package integration of RF blocks for a 5 GHz WLAN application,” IEEE Trans. Advanced Packaging, vol. 24, no. 3, pp. 384-391, Aug. 2001.
[61]R. Gardelli, G. La Cono, and M. Albani, “A low-cost suspended patch antenna for WLAN access points and point-to-point links,” IEEE Antennas and Wireless Propagat. Lett., vol. 3, pp. 90-93, 2004.
[62]D. Liu and B. Gaucher, “A dualband WLAN access point antenna,” in Antennas, Propagat. and EM theory Int. Symp. Proc., pp. 323-326, Oct. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top