跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明達
研究生(外文):Ming-Da Tsai
論文名稱:應用於微波與毫米波之矽基寬頻放大器與混波器
論文名稱(外文):Broadband Si-based Amplifiers and Mixers for Microwave and Millimeter-wave Applications
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:210
中文關鍵詞:微波單晶積體電路互補式金氧半導體射頻積體電路微波寬頻
外文關鍵詞:MMICCMOSRFICmicrowavebroadband
相關次數:
  • 被引用被引用:1
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是討論與發展以矽基單晶製程設計可應用於寬頻微波通訊系統的寬頻放大器與混波器。
在此論文中,我們研究了改善品質因素(Q)值的立體電感並實現於互補式金氧半導體(CMOS)製程。接著亦討論利用後製程來改善矽基電感的品質因素與自振頻率,包含平面、堆疊、微小型、改善Q值的微小型電感結構。從實驗結果可知與原先預期的趨勢相同。另外,於毫米波頻段的應用中,我們也討論在CMOS製程上所實現傳輸線結構,並使用薄膜微帶線與共面波導成功設計出兩個電路。
利用CMOS製程所設計的串接單級分佈式放大器第一次被成功的製作與測試。此放大器的晶片大小只有0.36 平方釐米,並達到最高的增益頻寬積由於只採用了兩級的設計與旋繞式電感。一個利用修正型衰減補償設計的串接單級分佈式放大器第一次被提出並實現在矽化鍺BiCMOS製程上,此放大器達到157 GHz的高增益頻寬積。此電路只消耗了直流功率48毫瓦而且晶片大小只有0.68平方釐米。相較於傳統的方法,利用所提出的修正型衰減補償技術可提高68%的增益頻寬積。此電路的特性也達到了以前利用更高階的製程所發表的分佈式放大器。
寬頻串接多級分佈式放大器被提出並實現於90奈米CMOS製程。第一次利用CMOS技術所設計的寬頻放大器可達到增益、頻寬、輸出功率可以與高階的化合物半導體技術(矽化鍺、砷化鎵、磷化銦)。量測結果與其他以高階製程實現的最佳分佈式放大器也在此論文作了總結。
我們也提出了應用於超寬頻無線通訊系統的修正型低功率分佈式放大器。此寬頻放大器是基於傳統分佈式放大器並於晶片內部提供低操作偏壓來達到低功率特性。這個微波單晶積體電路為可操作於3.1–10.6 GHz的超寬頻低雜訊放大器,並達到平坦的增益與雜訊指數的頻率響應、微小的晶片尺寸與最低的直流功率消耗。接著,欲應用於超寬頻通訊系統,我們亦設計另一個利用多階匹配網路的寬頻低雜訊放大器。
至於寬頻混波器,我們提出一個主動式的寬頻混波器並實現於商業0.18微米CMOS技術。當操作如混波器,與之前所發表的CMOS以及砷化鎵異質接面雙極性電晶體技術的微波單晶混波電路比較,此電路可達到最佳的特性。利用電感-電容的階梯匹配網路來達到組抗匹配,並利用注入電荷法來偏壓此吉伯特單元來達到提升整體的轉換增益。
最後,我們也提出一個寬頻的類比乘法/混波器。此電路第一次被提出同時利用電感-電容的階梯匹配網路與修正型衰減補償技術提升電路特性,並實現於矽化鍺BiCMOS技術。在之前所發表的文獻中,與矽化鍺、砷化鎵、磷化銦異質接面雙極性電晶體技術實現的混波器比較,此微波單晶積體電路達到最高的增益頻寬積 (204 GHz),也是目前利用矽單晶技術製作的寬頻混波器最好的結果。
Research on the development of Si-based broadband amplifiers and mixers for microwave wideband systems is presented in this dissertation.
In this dissertation, Q-improved 3-D inductor is investigated and implemented in CMOS technology. Post-processes for improving quality factor of Si-monolithic inductors are also described and discussed including planar, stacked, miniature 3-D and Q-improved miniature 3-D inductors. Experimental results show the agreement of predictable trend. For millimeter-wave applications, transmission lines in CMOS technology are also discussed and utilized to build two successful circuits in thin-film microstrip line and coplanar waveguides.
For the first time, a fully integrated CMOS cascaded single-stage distributed amplifier (CSSDA) has been designed, fabricated and tested. This CMOS CSSDA demonstrated highest gain-bandwidth product in only 0.36 mm2 chip area, which is due to only 2-stage design and helical inductors. A modified loss-compensated HBT 2-CSSDA was also first realized and demonstrated high gain-bandwidth product of 157 GHz. The total power consumption is only 48 mW with a miniature chip size of 0.68 mm2. The gain-bandwidth product of the modified loss-compensated 2-CSSDA is improved about 68 % compared with the convention attenuation-compensation technique. The performance rivals the previously reported HBT distributed amplifiers in more advanced technologies.
Broadband cascaded multi-stage distributed amplifier (CMSDA) is proposed and implemented in a standard-bulk 90nm CMOS technology. For the first time, a standard CMOS technology can offer gain, bandwidth, and power performances comparable to advanced compound semiconductor technologies (SiGe, GaAs, InP). The measured performances and comparison with recently reported state-of-the-art DAs in other advanced process techniques are also summarized in this dissertation.
A modified low-power distributed amplifier for ultra-wideband (UWB) applications was also proposed. The broadband amplifier is based on distributed amplifier with on-chip low supply voltage operation to achieve low-power performance. The MMIC is the first 3.1-10.6-GHz UWB LNA with a good flatness of noise figure and gain frequency responses, miniature die size and lowest power consumption. Then, we also demonstrated a multi-section broadband low-noise amplifier for UWB applications.
Regarding the broadband mixer, an active broadband mixer in commercial 0.18-µm CMOS technology was presented. The performance of this chip operated as a mixer represents state-of-the-art result compared with monolithic integrated mixers realized in CMOS and GaAs-based HBT technologies. The LC ladder matching networks are implemented to achieve broadband impedance matching, and the charge-injection method is also adopted to bias the Gilbert-cell core and promote the overall conversion gain.
A wideband analog multiplier/mixer was demonstrated at last. A SiGe BiCMOS broadband mixer and analog multiplier using LC ladder matching networks and modified loss-compensation method were first proposed. The SiGe BiCMOS MMIC achieves the highest gain-bandwidth product of 204 GHz among the reported SiGe, InP and GaAs-based HBT analog active mixer. The performance of this circuit represents state-of-the-art result of the MMIC broadband mixers using standard silicon-based technologies.
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 4
1.3 Contributions 7
1.4 Dissertation Organization 9
Chapter 2 Monolithic Inductive Components in CMOS Technology 11
2.1 Introduction of On-Chip Inductors 12
2.2 Categories of Inductors and Their Models 16
2.2.1 Characteristics and Models 16
2.2.2 Planar Inductors 20
2.2.3 3-D Inductors 24
2.3 Post-Processes 30
2.4 Transmission Lines in CMOS Technology 38
2.4.1 Transmission Lines 38
2.4.2 Thin-Film Microstrip Lines (TFMSLs) 40
2.4.3 Coplanar Waveguides (CPWs) 44
2.5 Summary 49
Chapter 3 Si-Based Traveling-Wave amplifiers 51
3.1 Overview of Conventional Distributed Amplifier 51
3.2 CMOS Cascaded Single-Stage Distributed Amplifier 53
3.2.1 Design of CMOS Cascode CSSDA 53
3.2.2 Experimental Results 65
3.2.3 Performance Summary 68
3.3 Cascaded Single-Stage Distributed Amplifier in SiGe BiCMOS Technology 69
3.3.1 Design Challenge of Traveling –wave amplifiers in HBT Technology 69
3.3.2 Proposed Modified Loss-Compensation Technique for HBT CSSDA 72
3.3.3 Experimental Results 82
3.3.4 Performance Summary 87
3.4 Cascaded Multi-Stage Distributed Amplifier in 90nm CMOS Technology 88
3.4.1 Proposed Cascaded Multi-Stage Distributed Amplifier 88
3.4.2 CMSDA in 90nm CMOS Technology 91
3.4.3 Experimental Results 102
3.4.4 Redesign and Prediction 109
3.4.5 Performance Summary 115
Chapter 4 Broadband Amplifiers for UWB Applications 117
4.1 Introduction of UWB Wireless Communication 117
4.2 Wideband Techniques 121
4.2.1 Feedback [122] 121
4.2.2 Inductive Peaking [131] 123
4.2.3 Balanced Amplifier [132] 125
4.3 Low-Power Modified Distributed Amplifiers for UWB Applications 126
4.3.1 Circuit Design 126
4.3.2 Experimental Results 135
4.3.4 Performance Summary 139
4.4 Wideband Multi-Section Matching Low-Noise Amplifier 140
4.4.1 Circuit Design 140
4.4.2 Experimental Results 147
4.4.3 Performance Summary 149
Chapter 5 Broadband Mixing Circuits 151
5.1 Fundamentals of Mixers 151
5.2 Broadband CMOS Mixer 157
5.2.1 Analog Multiplier and Mixer in FET Gilbert Cell 157
5.2.2 25-GHz Broadband Analog Multiplier and Mixer in 0.18-mm CMOS Technology 161
5.2.3 Experimental Results 167
5.2.4 Performance Summary 172
5.3 Broadband HBT Mixer Based on Loss-Compensation Technique 173
5.3.1 Design Methodology of HBT Analog Multiplier and Mixer using Gilbert Cell 173
5.3.2 Analog Multiplier and Mixer in 0.35-mm SiGe BiCMOS Technology 176
5.3.3 Experimental Results 182
5.3.4 Summary 187
Chapter 6 Conclusions 189
References 193
Publications List 208
[1] G. Girlando, T. Copani, S. A. Smerzi, A. Castorina, and G. Palmisano, “A
12GHz Silicon Bipolar Receiver for Digital Satellite Applications,” ISSCC Dig.
Tech. Papers, pp. 276-277, Feb., 2004.
[2] “Code of federal regulations, title 47–telecommunication, chapter I,” Federal
Commun. Commission, pt. 15—Radio Frequency Devices, secs. 15.245 and
15.249, 2004.
[3] “Code of federal regulations, title 47–telecommunication, chapter I,” Federal
Commun. Commission, pt. 15—Radio Frequency Devices, secs. 15.515 and
15.521, 2004.
[4] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” in Eur. Solid- State
Circuits Conf. Tech. Dig., Sept. 2002, pp. 155–158.
[5] E. Sonmez, A. Trasser, K. Schad, R. Abele, and H. Schumacher, “A single chip
24 GHz receiver front-end using a commercially available SiGe HBT foundry
process,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2002, pp.
159–162.
[6] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R. Wohlert, J. Bennett,
and J. Lanteri, “Ultra wide band 24 GHz automotive radar front-end,” in IEEE
MTT-S Int. Microwave Symp. Dig., Jun. 2003, pp. 369–372.
[7] D. Lu and D. Rutledge, “Investigation of indoor radio channel from 2.4 GHz to
24 GHz,” in IEEE AP-S Int. Symp. Dig., Jun. 2003, pp. 134–137.
[8] H. Hashemi, X. Guan, and A. Komijani, and A. Hajimiri, “A 24-GHz SiGe
Phased-Array Receiver—LO Phase-Shifting Approach,” IEEE Trans. Microwave
Theory Tech., vol. 52, pp. 614–626, Feb. 2005.
[9] C. Doan, S. Emani, A. Niknejad, and R. Brodersen, “Millimeter-Wave CMOS
Design,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743–752, May 1998.
[10] H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowski,
“77 GHz fully-MMIC automotive forward-looking radar,” in 1999 GaAs IC Sym.
Dig., pp. 211-214.
[11] E. Niehenke, P. Stenger, T. McCormick, and C. Schwerdt, “ A planar 94-GHz
transceiver with switchable polarization,” in 1993 IEEE MTT-S International
Microwave Sym. Dig., pp. 167-170.
[12] http://www.elva-1.com
[13] http://www.ieee802.org/15/pub/TG3a.html
[14] B. Razavi, Design of Integrated circuits for optical Communications:
McGrawHill, 2003.
194
[15] http://amiba.asiaa.sinica.edu.tw/
[16] Xian Guan, and Ali Hajimiri, "A 24-GHz CMOS front end," IEEE J. Solid-State
Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[17] K.-W. Yu, Y.-L. Lu, D.-C. Chang, Victor Liang, and M. Frank Chang, "K-Band
low-noise amplifiers using 0.18 μm CMOS technology," IEEE Microwave And
Wireless Components Lett., vol. 14, no. 3, pp. 106-108, March 2004.
[18] M. Tiebout, H. D. Wohlmuth, and W. Simburger, “A 1 V 51GHz
Fully-Integrated VCO in 0.12-µm CMOS,” in IEEE Int. Solid-State Circuits Conf.
Dig., San Francisco, CA, 2002, pp. 238-239
[19] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5-5.5-GHz
CMOS distributed amplifier,”IEEE JSSC vol.35, pp. 231-239, Feb. 2000
[20] H. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed
amplifier,” IEEE JSSC vol. 37, pp.985-993, Aug. 2002
[21] P. F. Chen, et al, “Silicon-on-sapphire MOSFET distributed amplifier with
coplanar waveguide matching,” IEEE RFIC Symp., pp.161-164, 1998
[22] B. Kleveland, et al, “Monolithic CMOS distributed amplifier and oscillator,”
IEEE ISSCC, pp. 70-71, 1999
[23] B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, “Performance of 1-10-GHz
Traveling Wave Amplifiers in 0.18-mm CMOS,” IEEE MWCL, vol. 12, pp.
327-329, Sep. 2002.
[24] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS
Distributed Amplifier,” IEEE RFIC Symp., pp.13-106, 2003
[25] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS
Cascode Distributed Amplifier,” IEEE VLSI Circ. Symp., pp.139-140, 2003
[26] H. Shigematsu, M. Sato, T. Hirose, F. Brewer and M. Rodwell, “40Gb/s CMOS
Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE ISSCC, pp.
476-477, 2004
[27] R. E. Amaya, N. G. Tarr and C. Plett, “A 27 GHz fully integrated CMOS
distributed amplifier using coplanar waveguide,” IEEE RFIC Symp., pp. 193-196,
2004
[28] K. Kobayashi, et.al., “A 2-50 GHz InAlAs/InGaAs-InP HBT distributed
amplifier,” IEEE GaAs IC Sym., pp.207-210, Nov. 1996
[29] S. Masuda, et.al., “An over-110-GHz InP HEMT flip-chip distributed baseband
amplifier with inverted microstripline structure for optical transmission systems,”
IEEE J. Solid-State Circuits, vol. 38, no. 9, pp.1479-1484, Sept. 2003.
[30] J. Carroll, et.al., “0.25mm pHEMT 40Gb/s E/O modulator drivers,” IEEE
International Mircowave Sym., vol. 1, pp. 489-492, June 2002.
195
[31] O. Wohlgemuth, et.al., “SiGe broadband amplifiers with up to 80 GHz
bandwidth for optical applications at 43 Gbit/s and beyond,” in IEEE 33rd
European Microwave Conf. Dig., pp.1087-1090, 2003.
[32] J. Kim, et.al., “A 12dBm 320GHz GBW distributed amplifier in a 0.12mm SOI
CMOS,” ISSCC Dig. Tech. Papers, pp. 479-479, Feb. 2004.
[33] R. C. Liu, et.al., “Design and analysis of DC-to-14-GHz and 22-GHz CMOS
cascode distributed amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8,
pp.1370-1374, Aug. 2004.
[34] H. Shigematsu, et.al., “40Gb/s CMOS distributed amplifier for fiber-optic
communication systems,” ISSCC Dig. Tech. Papers, pp. 476-477, Feb. 2004
[35] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed analog
multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol. 4, pp.
399–401, Dec. 1994.
[36] K. W. Kobayashi, R. M. Desrosiers, A. K. Oki, and D.C. Streit, “A DC-20-GHz
InP HBT balanced analog multiplier for high-data-rate direct-digital modulation
and fiber-optic receiver application,” in IEEE Trans. Microwave Theory Tech., vol.
48, pp. 194-202, Feb. 2000.
[37] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated
mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave Symp. Dig.,
Seattle, 2002, vol. 2, pp. 1241-1244.
[38] B. Tzeng, C. H. Lien, H. Wang Y. C. Wang, P. C. Chao, and C. H. Chen, “A
1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band
input-matching networks,” in IEEE Trans. Microwave Theory Tech., vol. 50, pp.
2564–2568, Nov. 2002.
[39] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain
Gilbert micromixer using GaInP/GaAs HBT technology,” in IEE Electronics Lett.,
vol. 39, pp. 637-638, April 2003.
[40] C. H. Tay, K. S. Yeo, J. G. Ma, and M. A. Do, “A 0.1-8 GHz ultra-wideband
high performance mixer for low power applications,” in IEEE APMC Proc.,
pp.420-422, Nov. 2003
[41] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L.
Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active
20 GHz mixer in SiGe technology,” in IEE Electronics Lett., vol. 37, No 1,
pp.36-37, Jan. 2001
[42] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz active
mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782, Dec.
2000
196
[43] M. D. Tsai, C. S. Lin, C. H. Wang, C. H. Lien and H. Wang, “A 0.1-23-GHz
SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation
technique,” accepted by IEEE RFIC Symp., June 2004
[44] Ming-Da Tsai, Kuo-Liang Deng, Huei Wang, Chun-Hung Chen, Chih-Sheng
Chang and John G.J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded
single-stage distributed amplifier,” IEEE Microwave and Wireless Component
Letters, vol. 14, pp. 554-556, Dec. 2004.
[45] Ming-Da Tsai, Chin-Shen Lin, Chun-Hsien Lien and Huei Wang, “Broadband
MMICs based on modified loss-compensation method using 0.35-mm SiGe
BiCMOS technology,” IEEE Trans. Microwave Theory Tech, vol. 53, pp. 496-505,
Feb. 2005.
[46] Ming-Da Tsai, Huei Wang, Jui-Feng Kuan, and Chih-Sheng Chang, “A 70GHz
cascaded multi-stage distributed amplifier in 90nm CMOS technology,”
International Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005.
[47] Ming-Da Tsai, Kun-You Lin and Huei Wang, “A 5.4-mW LNA Using 0.35-mm
SiGe BiCMOS Technology for 3.1-10.6-GHz UWB Wireless Receivers,” in IEEE
RFIC Symp., June 2005.
[48] Ming-Da Tsai and Huei Wang, “A 0.3-25-GHz ultra-wideband mixer using
commercial 0.18-μm CMOS technology,” IEEE Microwave and Wireless
Component Letters, vol. 14, no. 11, pp. 522-524, Nov. 2004.
[49] Ming-Da Tsai, Chin-Shen Lin, Chi-Hsueh Wang, Chun-Hsien Lien and Huei
Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on
attenuation-compensation Technique,” in IEEE RFIC Symp., pp. 417-420, June
2004.
[50] K.T. Christensen, and A. Jorgensen,” Easy simulation and design of on-chip
inductors in standard CMOS processes,” in IEEE ISCAS., pp.360-364, 1998.
[51] Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A.
Wachnik, T. J. King, and C. Hu, “ Frequency-Independent Equivalent-Circuit
Model for On-Chip Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 38, pp.
419-426, March 2003.
[52] Design Manual of MS/RF 0.18-mm CMOS, TSMC
[53] C. P. Yue and S. S. Wong, “On-chip Spiral inductors with patterned ground
shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743–752,
May 1998.
[54] C. Y. Lee, T. S. Chen, J. Deng, and C. H. Kao, “A simple Systematic Spiral
Inductor Design With Perfected Q Improvement for CMOS RFIC Application,”
IEEE Trans. Microwave Theory Tech., vol. 53, pp. 523–528, Feb. 2005.
197
[55] C. H. Wu, C.C. Tang, and S. I. Liu, “Analysis of on-chip spiral inductors using
the distributed capacitance model,” IEEE J. Solid-State Circuits, SC-38, pp.
1040–1044, May 2003.
[56] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in
CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, pp. 620–628, Apr.
2001.
[57] M. W. Green et al., “Miniature multilayer spiral inductors for GaAs MMICs,”
in GaAs IC Symp., 1989, pp. 303–306.
[58] R. B. Merril et al., “Optimization of high-Q inductors for multilevel metal
CMOS,” in Proc. IEDM, Dec. 1995, pp. 38.7.1–38.7.4.
[59] C. C. Tang, C. H. Wu, and S. I. Liu, “Miniature 3-D Inductors in Standard
CMOS Process, “IEEE J. Solid-State Circuits, vol. 37, pp. 771-780, April 2002
[60] M. D. Tsai, H. Wang, J. K. Kuan, and C. P. Chao, “A Miniature 4.3-7-GHz, 1-V
CMOS LNA with Helical Inductors,” in IEEE European Microwave Conference,
Oct. 2004.
[61] H. M. Hsu, et al, “A 0.18-µm foundry RF CMOS technology with 70-GHz ft for
single chip system solutions,” IEEE International Microwave Symp. Digest, pp.
1869-1872, 2001.
[62] J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Microwave inductors and
capacitors in standard multilevel interconnect silicon technology,” IEEE Trans. on
Microwave Theory and Tech., vol. 44, pp. 100-104, Jan. 1996.
[63] J.-B. Yoon, Y.-S. Choi, B.-I. Kim, Y. Eo, and E. Yoon, “CMOS-compatible
surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs,”
IEEE Electron Device Letters, Vol. 22, pp. 591-593, Oct. 2002.
[64] C.-H. Chen, Y.-K. Fang, C.-W. Yang, and C. S. Tang, “A deep submicro CMOS
process compatible suspending high-Q inductor,” IEEE Electron Device Letters,
Vol. 22, pp. 522-523, Nov. 2001.
[65] Design Manual of 2P4M 0.35-mm CMOS, TSMC
[66] Design Manual of 2P4M 0.35-mm CMOS MEMS, TSMC
[67] Design Manual of 1P9M 90-mm CMOS, TSMC
[68] P. C. Huang, M. D. Tsai, H. Wang, C. H. Chen, and C. S. Chang, “A 114GHz
VCO in 0.13mm CMOS Technology,” ISSCC Dig. Tech. Papers, Feb. 2005.
[69] T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip
Design, 3rd ed. New York: Wiley, 2000.
[70] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee, and S. S. Wong,
“Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and
oscillator design,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1480–1488,
Oct. 2001.
198
[71] Shih-Chieh Shin, Szu-Fan Lai, Kun-You Lin, Ming-Da Tsai, Huei Wang,
Chih-Sheng Chang, and Yung-Chih Tsai, “18-26 GHz Low-Noise Amplifiers
Using 130- and 90-nm Bulk CMOS Technologies,” in IEEE RFIC Symp., June
2005.
[72] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed
amplification,” in Proc. Inst. Radio Eng., Aug. 1948, pp. 956–969.
[73] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter,
“MESFET distributed amplifier design guidelines,” IEEE Trans. Microwave
Theory Tech., vol. 32, pp. 248–275, Mar. 1984.
[74] C. S. Aitchison, “The advantages of microwave distributed amplifier and
associated circuits,” Proc. MIOP90, pp. 17-29, April 1990
[75] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS
Distributed Amplifier,” IEEE RFIC Symp., pp.13-106, 2003
[76] B. Y. Banyamin, M. Berwick, “Analysis of the performance of four-cascaded
single-stage distributed amplifiers,” IEEE T-MTT vol. 48, pp.2657-2663, Dec.
2000
[77] K. L. Deng, T. W. Huang, and H. Wang, “Design and analysis of novel
high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with
traveling-wave gain stages,” IEEE T-MTT vol. 51, pp.2188-2196, Nov. 2003
[78] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5-5.5-GHz
CMOS distributed amplifier,”IEEE JSSC vol.35, pp. 231-239, Feb. 2000
[79] H. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed
amplifier,” IEEE JSSC vol. 37, pp.985-993, Aug. 2002
[80] P. F. Chen, et al, “Silicon-on-sapphire MOSFET distributed amplifier with
coplanar waveguide matching,” IEEE RFIC Symp., pp.161-164, 1998
[81] B. Kleveland, et al, “Monolithic CMOS distributed amplifier and oscillator,”
IEEE ISSCC, pp. 70-71, 1999
[82] B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, “Performance of 1-10-GHz
Traveling Wave Amplifiers in 0.18-mm CMOS,” IEEE MWCL, vol. 12, pp.
327-329, Sep. 2002
[83] H. Shigematsu, M. Sato, T. Hirose, F. Brewer and M. Rodwell, “40Gb/s CMOS
Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE ISSCC, pp.
476-477, 2004
[84] R. E. Amaya, N. G. Tarr and C. Plett, “A 27 GHz fully integrated CMOS
distributed amplifier using coplanar waveguide,” IEEE RFIC Symp., pp. 193-196,
2004
199
[85] J. Gil, S. S. Song. H. Lee, H. Shin, ”A -119.2 dBc/Hz at 1 MHz, 1.5 mW, fully
integrated, 2.5-GHz, CMOS VCO using helical inductors,” IEEE MWCL, vol. 13,
pp. 457-459, Nov. 2003
[86] M. D. Tsai, H. Wang, J. F. Kuan, and C. P. Chao, “A miniature 4.3-7-GHz, 1-V
CMOS LNA with helical inductors,” in IEEE European Microwave Conference,
Amsterdam, Oct. 2004.
[87] M. D. Tsai, Design of 5-GHz Low-Voltage and Gain-Controllable CMOS Low
Noise Amplifier, M.S. Thesis, National Taiwan University, June 2003.
[88] R. C. Liu, et.al., “Design and Analysis of DC-to-14-GHz and 22-GHz CMOS
Cascode Distributed Amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8,
pp.1370-1374, Aug. 2004
[89] S. S. Lu, C. C. Meng, T. W. Chen, and H. C. Chen, “The origin of the kink
phenomenon of transistor scattering parameter S22,” IEEE T-MTT vol. 49,
pp.333-340, Feb. 2001.
[90] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of
Analog Integrated Circuits, Fourth Edition, John Wiley, pp. 202-205, 2001.
[91] H. M. Hsu, et al, “A 0.18-mm foundry RF CMOS technology with 70-GHz Ft
for single chip system solutions,” IEEE International Microwave Symp. Digest,
pp. 1869-1872, 2001
[92] C. H. Diaz, et al., “A 0.18-mm CMOS logic technology with dual gate oxide
and low-k interconnect for high-performance and low-power applications,”
IEEE VLSI Tech. Symp., pp. 11-12, 1999
[93] K. W. Kobayashi, R. Esfandiari and A. K. Oki, “A novel HBT distributed
amplifier design topology based on attenuation compensation techniques,” IEEE
Trans. Microwave Theory Tech., vol. 42, pp. 2583-2589, Dec. 1994.
[94] K. W. Kobayashi, R. Esfandiari, W. R. Jones, K. Minot, and B. Allen, “A
6-21-GHz monolithic HEMT 2 x 3 matrix distributed amplifier,” IEEE Guided
Wave Letters, vol. 3, pp. 11-13, 1993
[95] Design Manual of 3P3M 0.35-mm SiGe BiCMOS, TSMC
[96] B. Aganval, Q. Lee, D. Mensa, R. Pullela, J. Guthrie, M.J.W. Rodwell,
“Broadband feedback amplifiers with AlInAs/GalnAs transferred substrate HBT,”
IEE Electronics Letters, vol. 34, pp. 1357-1358, June 1998
[97] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, M.J.W. Rodwell, “Baseband
amplifiers in transferred-substrate HBT technology,” IEEE Gallium Arsenide
Integrated Circuit (GaAs IC) Symp., pp. 33-36, Nov. 1998.
[98] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of
Aanalog Integrated Circuits, Fourth Edition, John Wiley, pp. 202-205, 2001.
200
[99] D. A. Hodges, “Darlington‘s contributions to transistor circuit design,” IEEE
Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 46, pp.
102-104, Jan. 1999
[100] S. Mohammadi, J. W. Park, D. Pavlidis, J. L. Guyaux and J. C. Garcia,
“Design optimization and characterization of high-gain GaInP/GaAs HBT
distributed amplifiers for high-bit-rate telecommunication,” IEEE Trans.
Microwave Theory Tech, vol. 48, pp. 1038-1044, June 2000.
[101] K. L. Koon, Z. Hu, H. Aghvami and A. A. Rezazadeh, “High gain and ultra
wideband SiGe/BiCMOS cascaded single stage distributed amplifier for 4G RF
front-end applications,” IEEE Symp. On Personal, Indoor and Mobile Radio
Communication Proceedings, pp. 2180-2184, 2003
[102] O. Wohlgemuth, P. Paschke and Y. Baeyens, “SiGe broadband amplifiers
with up to 80 GHz bandwidth for optical applications at 43 Gbit/s and beyond,” in
IEEE 33rd European Microwave Conf. Dig., 2003, pp.1087-1090
[103] K. W. Kobayashi, L. T. Tran, M. D. Lammert, A. K. Oki and D. C. Streit,
“Transimpedance bandwidth performance of an HBT loss-compensated coplanar
waveguide distributed amplifier,” Electronics Lett., vol. 32, no. 24, pp. 2287-2288,
Nov. 1996.
[104] S. Kudszus, A. Shahani, S. Pavan, D. K. Shaeffer and M. Tarsia, “A
46-GHz distributed transimpedance amplifier using SiGe Bipolar technology,”
in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1387-1390.
[105] J. Aguirre and C. Plett, “A 0.1-50 GHz SiGe HBT distributed amplifier
employing constant-k m-derived sections,” in IEEE MTT-S Int. Microwave Symp.
Dig., 2003, pp. 923-926.
[106] J. Carroll, et.al., “0.25mm pHEMT 40Gb/s E/O modulator Drivers,” IEEE
International Mircowave Sym., vol. 1, pp. 489-492, June 2002
[107] T. Otsuji, “Optical Fiber Systems: System Overview and Technology
Tradeoffs”, 2001 IEEE GaAs IC Symp. Short Course.
[108] K. Kobayashi, et.al., “A 2-50 GHz InAlAs/InGaAs-InP HBT Distributed
Amplifier,” IEEE GaAs IC Sym., pp.207-210, Nov. 1996
[109] S. Masuda, et.al., “An Over-110-GHz InP HEMT Flip-Chip Distributed
Baseband Amplifier With Inverted Microstripline Structure for Optical
Transmission Systems,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp.1479-1484,
Sept. 2003.
[110] O. Wohlgemuth, et.al., “SiGe broadband amplifiers with up to 80 GHz
bandwidth for optical applications at 43 Gbit/s and beyond,” in IEEE 33rd
European Microwave Conf. Dig., pp.1087-1090, 2003.
201
[111] J. Kim et al., “A 12dBm 320GHz GBW Distributed Amplifier in a 0.12µm
SOI CMOS,” ISSCC Dig. Tech. Papers, pp. 479-479, Feb., 2004.
[112] H. Shigematsu et al., “40Gb/s CMOS Distributed Amplifier for Fiber- Optic
Communication Systems,” ISSCC Dig. Tech. Papers, pp. 476-477, Feb., 2004.
[113] Sonnet User’s Manual, Sonnet Software Inc., Liverpool, NY, 1998
[114] A. Worapishet, M. Chongcheawchamnan and S. Srisathit, “Broadband
amplification in CMOS technology using cascaded single-stage distributed
amplifier,” IEE Electronics Letters, vol. 38, pp. 675-676, July. 2002
[115] A. Worapishet, M. Chongcheawchamnan and S. Srisathit, “On the
feasibility of cascaded single-stage distributed amplifier topology in digital
technology,” IEEE Midwest Symp. on Circuits and Systems, pp. 354-257, 2002
[116] User Manual of Microwave Office, AWR Co., CA.
[117] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE
Microwave Mag., vol. 4, pp.36-47, June 2003.
[118] UWB Multi-Band Coalition [Online]. Available:
http://www.uwbmultiband.org
[119] IEEE 802.15WPAN High Rate Alternative PHY Task Group 3a (TG3a)
[Online]. Available: http://www.ieee802.org/15/pub/TG3a.html
[120] S. Stroh, “Ultra-wideband: Multimedia unplugged,” IEEE Spectrum, vol.
40, pp. 23–27, Sept. 2003.
[121] K. Siwiak, “Ultra-wide band radio: Introducing a new technology,” in
Proc. IEEE Vehicular Technology Conf., 2001, pp. 1088–1093.
[122] A. Bevilacqua and Ali M Niknejad, “An ultra-wideband CMOS LNA for
3.1 to 10.6GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, pp.
2259-2268, Dec. 2004
[123] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S.
Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and
satellite communication,” in IEEE Radio Frequency Integrated Circuits Symp.
Dig. Papers, 2000, pp. 209–212.
[124] Y. Yun, M. Nishijima, M. Katsuno, H. Ishida, K. Minagawa, T. Nobusada,
and T. Tanaka, “A fully integrated broad-band amplifier MMIC employing a
novel chip-size package,” IEEE Trans. Microwave Theory Tech., vol. 50, pp.
2930–2937, Dec. 2002.
[125] P. Marsh, S. Chu, S. Lardizabal, R. Leoni III, S. Kang, R. Wohlert, A.
Bowlby,W. Hoke, R. McTaggart, C. Whelan, P. Lemonias, P. McIntosh, and T.
Kazior, “Low noise metamorphic HEMT devices and amplifiers on GaAs
substrates,” in IEEE Microwave Theory and Techniques Symp. Dig. Papers, 1999,
pp. 105–108.
202
[126] Y. Greshishchev, P. Schvan, J. L. Showell, M.-L. Xu, J. J. Ojha, and J. E.
Rogers, “A fully integrated SiGe receiver IC for 10-Gb/s data rate,” IEEE J.
Solid-State Circuits, vol. 35, pp. 1949–1957, Dec. 2000.
[127] J. Cao, M. Green, A. Momtaz, K. Vakilian, D. Chung, K.-C. Jen, M.
Caresosa, X. Wang, W.-G. Tan, Y. Cai, I. Fujimori, and A. Hairapetian,
“OC-192 transmitter and receiver in standard 0.18-mm CMOS,” IEEE J.
Solid-State Circuits, vol. 37, pp. 1768–1780, Dec. 2002.
[128] H.-T. Ahn and D. J. Allstot, “A 0.5–8.5-GHz fully differential CMOS
distributed amplifier,” IEEE J. Solid-State Circuits, vol. 37, pp. 985–993, Aug.
2002.
[129] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB
CMOS Cascode Distributed Amplifier,” IEEE VLSI Circ. Symp., pp.139-140,
2003.
[130] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated
0.5–5.5-GHz CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol. 35,
pp. 231–239, Feb. 2000.
[131] B. Razavi, Design of Integrated circuits for optical Communications:
McGrawHill, 2003
[132] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed.,
Prentice-Hall, N.J., 1997.
[133] D. K. Shaffer, and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,
“ IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, Jun 1997
[134] M. D. Tsai, H. Wang, J. F. Kuan, and C. P. Chao, “A miniature 4.3-7-GHz,
1-V CMOS LNA with helical inductors,” in IEEE European Microwave
Conference, Amsterdam, Oct. 2004.
[135] T. K. K. Tsang and M. N. El-Gamal, “A fully integrated 1 V 5.8 GHz
bipolar LNA,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’01), vol. 4,
pp. 842–845, May 2001.
[136] E. Imbs, I. Telliez, S. Detout, and Y. Imbs, “A low-cost-packaged 4.9–6
GHz LNA for WLAN application,” in IEEE MTT-S Dig., vol. 3, pp. 1569–1572,
June 2003.
[137] A. Ismail and A. Abidi, “A 3 to 10GHz LNA using a wideband LC-ladder
matching network,” International Solid-State Circuit Conf. Dig. Tech. Papers, pp.
384-385, Feb. 2004.
[138] D. Barras, F. Ellinger, H. Jackel, and W. Hirt, “A low supply voltage SiGe
LNA for ultra-wideband frontends,” IEEE Microwave and Wireless Component
Letters, vol. 14, no. 10, Oct. 2004
203
[139] F. Ellinger, D. Barras, M. Schmatz, and H. Jackel, “A low-power DC-7.8
GHz BiCMOS LNA for UWB and Optical communication,” in IEEE MTT-S Dig.,
pp. 13-16, June 2004.
[140] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB
CMOS Cascode Distributed Amplifier,” IEEE VLSI Circuit Symp., pp.139-140,
2003
[141] A. Bevilacqua and Ali M Niknejad, “An ultra-wideband CMOS LNA for
3.1 to 10.6GHz wireless receivers,” International Solid-State Circuit Conf. Dig.
Tech. Papers, pp. 382-383, Feb. 2004.
[142] W. Lee and I. W. Filanovsky, “2 V 3 GHz low-noise bipolar wideband
amplifier,” in Proc. Canadian Conf. Electrical Computer Engineering, pp.
627–632, May 1999.
[143] J. Sadowy et al., “Low noise, high linearity, wide bandwidth amplifier using
a 0.35mm SiGe BiCMOS for WLAN applications,” in IEEE Radio Frequency
Integrated Circuits (RFIC) Symp., pp. 217–220, June 2002.
[144] H. Ainspan, M. Soyuer, J.-O. Plouchart, and J. Burghartz, “A 6.25-GHz low
DC power low-noise amplifier in SiGe,” in IEEE Custom Integrated Circuits
Conf. , pp. 177–180, May 1997.
[145] F. Bruccoleri et al., “Noise canceling in wideband CMOS LNAs,”
International Solid-State Circuit Conf. Dig. Tech. Papers, pp. 406-407, Feb. 2002
[146] C. S. Aitchinson, “The intrinsic noise figure of the MESFET distributed
amplifier,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 460-466, June
1985.
[147] Design Manual of 3P3M 0.35-mm SiGe BiCMOS, TSMC
[148] S. Mass, Microwave Mixer, 2nd Ed., Artech House, Inc., Massachusetts,
1993
[149] C. T. Li, D. Kubo, C. C. Han, C. C. Chen, C. H. Lien, H. Wang, R. M. Wei,
C. H. Yang, T. D. Chiueh, J. Peterson, M. Kesteven, W. Wilson, "A wideband
analog correlator system for AMiBA," to appear in SPIE Proceedings,
Astronomical Telescopes and Instrumentation, June 2004
[150] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond
response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 365-373, Dec. 1968
[151] H. T. Friis, “Noise figure of radio receiver,” Proc. IRE, vol. 32,
pp.419-422, July 1944.
[152] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, Microwave
Circuit Design Using Linear and Nonlinear Techniques, Wiley, 1990, pp.
504~506
204
[153] C. D. Hull, and R. G. Meyer, “A systematic approach to the analysis of
noise in mixers,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 909-919, Dec. 1993
[154] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a
microwave CMOS Gilbert cell mixer,” IEEE J. Solid-State Circuits, vol. 32, pp.
1151-1155, July 1997
[155] B. Razavi, RF Microelectronics: PRENTICE HALL, 1998
[156] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed
analog multiplier using InP HEMT’s,” IEEE Microwave and Guided Wave Lett.,
vol. 4. pp. 399~401, Dec. 1994
[157] Ravender Goyal, High-Frequency Analog Integrated Circuit Design, Wiley,
1994, pp. 291~296
[158] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed
analog multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol.
4, pp. 399–401, Dec. 1994.
[159] K. W. Kobayashi, R. M. Desrosiers, A. K. Oki, and D.C. Streit, “A
DC-20-GHz InP HBT balanced analog multiplier for high-data-rate direct-digital
modulation and fiber-optic receiver application,” in IEEE Trans. Microwave
Theory Tech., vol. 48, pp. 194-202, Feb. 2000.
[160] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic
integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave
Symp. Dig., Seattle, 2002, vol. 2, pp. 1241-1244.
[161] B. Tzeng, C. H. Lien, H. Wang Y. C. Wang, P. C. Chao, and C. H. Chen,
“A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with
broad-band input-matching networks,” in IEEE Trans. Microwave Theory Tech.,
vol. 50, pp. 2564–2568, Nov. 2002.
[162] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB
gain Gilbert micromixer using GaInP/GaAs HBT technology,” in IEE Electronics
Lett., vol. 39, pp. 637-638, April 2003.
[163] C. H. Tay, K. S. Yeo, J. G. Ma, and M. A. Do, “A 0.1-8 GHz
ultra-wideband high performance mixer for low power applications,” in IEEE
APMC Proc., pp.420-422, Nov. 2003
[164] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L.
Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active
20 GHz mixer in SiGe technology,” in IEE Electronics Lett., vol. 37, No 1,
pp.36-37, Jan. 2001
[165] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz
active mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782,
Dec. 2000
205
[166] M. D. Tsai, C. S. Lin, C. H. Wang, C. H. Lien and H. Wang, “A
0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on
attenuation-compensation technique,” accepted by IEEE RFIC Symp., June 2004
[167] H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Chen, K. R.
Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A
0.18-µm foundry RF CMOS technology with 70-GHz ft for single chip system
solutions,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1869-1872,
2001
[168] K. Osafune and Y. Yamauchi, “20-GHz 5-dB-gain analog multipliers with
AlGaAs/GaAs HBTs,” IEEE Trans. Microwave Theory Tech., vol. 42, pp.
518-520, Mar. 1994.
[169] K. W. Kobayashi, L. T. Tran, S. Bui, A. K. Oki, D. C. Streit, and M. Rosen,
“InAlAs/InGaAs HBT X-band double-balanced upconverter,” IEEE J. Solid-State
Circuits, vol. 29, pp. 1238–1243, Oct. 1994.
[170] Advanced Design System (ADS), Agilent
[171] L. A. MacEachern and T. Manku, “A charge-injection method for Gilbert
cell biasing,” in IEEE Canadian Conference on Electric and Computer
Engineering, vol. 1, pp. 365-368, May 1998
[172] Paul R. Gray and Robert G. Meyer, Analysis and Design of Analog
Integrated Circuits 3rd Edtion, Wiley, 1993, pp. 670~672
[173] Donald O. Pederson and Kartikeya Mayaram, Analog Integrated Circuits
for Communication Principles, Simulation and Design, Kluwer Academic
Publishers, 1991, pp. 422~431.
[174] S. Colomines, T. Arnaud, R. Plana, T. Parra, and J. Graffeuil, “Design of
high performaces Gilbert-Cell mixers for GSM/DCS front-ends,” IEEE RFIC
Symposium, 1998, pp. 143~146.
[175] J.R. Long and M.A. Copeland, “A 1.9 GHz low-voltage silicon bipolar
receiver front-end for wireless personal communications systems,” IEEE Journal
of Solid-State Circuits, Dec. 1995, pp. 1438~1448.
[176] Design Manual of 0.35-mm 3P3M SiGe BiCMOS, TSMC
[177] K. L. Deng and H. Wang, “A 3-33 GHz PHEMT MMIC distributed drain
mixer,” in IEEE RFIC Symp. Dig., 2002, pp. 151-154.
[178] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed
analog multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol.
4, pp. 399–401, Dec. 1994.
[179] L. M. Burns, J. F. Jensen, W. E. Stanchina, R. A. Metzger, and Y. K. Allen,
“DC-to-Ku-band MMIC InP HBT double-balanced active mixer,” in IEEE Int.
Solid-State Circuits Conf. Dig., San Francisco, CA, 1991, pp. 124–125.
206
[180] J. Glenn, M. Case, D. Harame, B. Meyerson, and R. Poisson, “12-GHz
Gilbert mixers using a manufacturable Si/Si–Ge epitaxial-base bipolar
technology,” in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting,
Minneapolis, MN, 1998, pp. 186–189.
[181] H. Wang, “A 1-V multi-gigahertz RF mixer core in 0.5-mm CMOS,” in
IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 1998, pp. 370–371.
[182] B. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. H. Chen,
“A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with
broad-band input-matching networks,” IEEE Trans. Microwave Theory Tech., vol.
50, pp. 2564–2568, Nov. 2002.
[183] I. Gresham and A. Jenkins, “a low-noise broadband SiGe mixer for 24-GHz
ultra-wideband automotive applications,” in IEEE RAWCON Proc., pp. 361-364,
2003
[184] A. Y. Umeda, C. T. Matsuno, A. K. Oki, G. S. Dow, K.W. Kobayashi, D. K.
Umemoto, and M. E. Kim, “A monolithic GaAs HBT upconverter,” in IEEE
Microwaves and Millimeter-Wave Monolithic Circuits Symp. Dig., Dallas, TX,
1990, pp. 77–80.
[185] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB
gain Gilbert micromixer using GaInP/GaAs HBT technology,” Electronics Lett.,
vol. 39, pp. 637-638, April 2003.
[186] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic
integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave
Symp. Dig., Seattle, 2002, vol. 2, pp. 1241-1244.
[187] P. Weger, G. Schultes, L. Treitinger, E. Bertagnolli, and K. Ehinger,
“Gilbert multiplier as an active mixer with conversion gain bandwidth of up to
17 GHz,” Electronics Lett., vol. 27, no. 7, pp. 570–571, Mar. 1998.
[188] K. W. Kobayashi, L. T. Tran, S. Bui, A. K. Oki, D. C. Streit, and M. Rosen,
“InAlAs/InGaAs HBT X-band double-balanced upconverter,” IEEE J. Solid-State
Circuits, vol. 29, pp. 1238–1243, Oct. 1994.
[189] J. Wholey, I. Kipnis, and C. Snapp, “Silicon bipolar double balanced active
mixer MMIC’s for RF and microwave applications up to 6 GHz,” in IEEE
Microwaves and Millimeter-Wave Monolithic Circuits Symp. Dig., Long Beach,
CA, 1989, pp. 133–137.
[190] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz
active mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782,
Dec. 2000
[191] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L.
Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active
207
20 GHz mixer in SiGe technology,” IEE Electronics Lett., vol. 37, No 1, pp.36-37,
Jan. 2001
[192] Sonnet User’s Manual, Sonnet Software, Liverpool, NY, 1998.
[193] Ansoft HFSS User’s Manual, Ansoft Co.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊