|
[1] G. Girlando, T. Copani, S. A. Smerzi, A. Castorina, and G. Palmisano, “A 12GHz Silicon Bipolar Receiver for Digital Satellite Applications,” ISSCC Dig. Tech. Papers, pp. 276-277, Feb., 2004. [2] “Code of federal regulations, title 47–telecommunication, chapter I,” Federal Commun. Commission, pt. 15—Radio Frequency Devices, secs. 15.245 and 15.249, 2004. [3] “Code of federal regulations, title 47–telecommunication, chapter I,” Federal Commun. Commission, pt. 15—Radio Frequency Devices, secs. 15.515 and 15.521, 2004. [4] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” in Eur. Solid- State Circuits Conf. Tech. Dig., Sept. 2002, pp. 155–158. [5] E. Sonmez, A. Trasser, K. Schad, R. Abele, and H. Schumacher, “A single chip 24 GHz receiver front-end using a commercially available SiGe HBT foundry process,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2002, pp. 159–162. [6] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R. Wohlert, J. Bennett, and J. Lanteri, “Ultra wide band 24 GHz automotive radar front-end,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2003, pp. 369–372. [7] D. Lu and D. Rutledge, “Investigation of indoor radio channel from 2.4 GHz to 24 GHz,” in IEEE AP-S Int. Symp. Dig., Jun. 2003, pp. 134–137. [8] H. Hashemi, X. Guan, and A. Komijani, and A. Hajimiri, “A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 614–626, Feb. 2005. [9] C. Doan, S. Emani, A. Niknejad, and R. Brodersen, “Millimeter-Wave CMOS Design,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743–752, May 1998. [10] H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowski, “77 GHz fully-MMIC automotive forward-looking radar,” in 1999 GaAs IC Sym. Dig., pp. 211-214. [11] E. Niehenke, P. Stenger, T. McCormick, and C. Schwerdt, “ A planar 94-GHz transceiver with switchable polarization,” in 1993 IEEE MTT-S International Microwave Sym. Dig., pp. 167-170. [12] http://www.elva-1.com [13] http://www.ieee802.org/15/pub/TG3a.html [14] B. Razavi, Design of Integrated circuits for optical Communications: McGrawHill, 2003. 194 [15] http://amiba.asiaa.sinica.edu.tw/ [16] Xian Guan, and Ali Hajimiri, "A 24-GHz CMOS front end," IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004. [17] K.-W. Yu, Y.-L. Lu, D.-C. Chang, Victor Liang, and M. Frank Chang, "K-Band low-noise amplifiers using 0.18 μm CMOS technology," IEEE Microwave And Wireless Components Lett., vol. 14, no. 3, pp. 106-108, March 2004. [18] M. Tiebout, H. D. Wohlmuth, and W. Simburger, “A 1 V 51GHz Fully-Integrated VCO in 0.12-µm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 2002, pp. 238-239 [19] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5-5.5-GHz CMOS distributed amplifier,”IEEE JSSC vol.35, pp. 231-239, Feb. 2000 [20] H. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed amplifier,” IEEE JSSC vol. 37, pp.985-993, Aug. 2002 [21] P. F. Chen, et al, “Silicon-on-sapphire MOSFET distributed amplifier with coplanar waveguide matching,” IEEE RFIC Symp., pp.161-164, 1998 [22] B. Kleveland, et al, “Monolithic CMOS distributed amplifier and oscillator,” IEEE ISSCC, pp. 70-71, 1999 [23] B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, “Performance of 1-10-GHz Traveling Wave Amplifiers in 0.18-mm CMOS,” IEEE MWCL, vol. 12, pp. 327-329, Sep. 2002. [24] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS Distributed Amplifier,” IEEE RFIC Symp., pp.13-106, 2003 [25] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS Cascode Distributed Amplifier,” IEEE VLSI Circ. Symp., pp.139-140, 2003 [26] H. Shigematsu, M. Sato, T. Hirose, F. Brewer and M. Rodwell, “40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE ISSCC, pp. 476-477, 2004 [27] R. E. Amaya, N. G. Tarr and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide,” IEEE RFIC Symp., pp. 193-196, 2004 [28] K. Kobayashi, et.al., “A 2-50 GHz InAlAs/InGaAs-InP HBT distributed amplifier,” IEEE GaAs IC Sym., pp.207-210, Nov. 1996 [29] S. Masuda, et.al., “An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstripline structure for optical transmission systems,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp.1479-1484, Sept. 2003. [30] J. Carroll, et.al., “0.25mm pHEMT 40Gb/s E/O modulator drivers,” IEEE International Mircowave Sym., vol. 1, pp. 489-492, June 2002. 195 [31] O. Wohlgemuth, et.al., “SiGe broadband amplifiers with up to 80 GHz bandwidth for optical applications at 43 Gbit/s and beyond,” in IEEE 33rd European Microwave Conf. Dig., pp.1087-1090, 2003. [32] J. Kim, et.al., “A 12dBm 320GHz GBW distributed amplifier in a 0.12mm SOI CMOS,” ISSCC Dig. Tech. Papers, pp. 479-479, Feb. 2004. [33] R. C. Liu, et.al., “Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode distributed amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp.1370-1374, Aug. 2004. [34] H. Shigematsu, et.al., “40Gb/s CMOS distributed amplifier for fiber-optic communication systems,” ISSCC Dig. Tech. Papers, pp. 476-477, Feb. 2004 [35] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed analog multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol. 4, pp. 399–401, Dec. 1994. [36] K. W. Kobayashi, R. M. Desrosiers, A. K. Oki, and D.C. Streit, “A DC-20-GHz InP HBT balanced analog multiplier for high-data-rate direct-digital modulation and fiber-optic receiver application,” in IEEE Trans. Microwave Theory Tech., vol. 48, pp. 194-202, Feb. 2000. [37] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, 2002, vol. 2, pp. 1241-1244. [38] B. Tzeng, C. H. Lien, H. Wang Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” in IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2564–2568, Nov. 2002. [39] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology,” in IEE Electronics Lett., vol. 39, pp. 637-638, April 2003. [40] C. H. Tay, K. S. Yeo, J. G. Ma, and M. A. Do, “A 0.1-8 GHz ultra-wideband high performance mixer for low power applications,” in IEEE APMC Proc., pp.420-422, Nov. 2003 [41] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L. Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active 20 GHz mixer in SiGe technology,” in IEE Electronics Lett., vol. 37, No 1, pp.36-37, Jan. 2001 [42] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz active mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782, Dec. 2000 196 [43] M. D. Tsai, C. S. Lin, C. H. Wang, C. H. Lien and H. Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” accepted by IEEE RFIC Symp., June 2004 [44] Ming-Da Tsai, Kuo-Liang Deng, Huei Wang, Chun-Hung Chen, Chih-Sheng Chang and John G.J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microwave and Wireless Component Letters, vol. 14, pp. 554-556, Dec. 2004. [45] Ming-Da Tsai, Chin-Shen Lin, Chun-Hsien Lien and Huei Wang, “Broadband MMICs based on modified loss-compensation method using 0.35-mm SiGe BiCMOS technology,” IEEE Trans. Microwave Theory Tech, vol. 53, pp. 496-505, Feb. 2005. [46] Ming-Da Tsai, Huei Wang, Jui-Feng Kuan, and Chih-Sheng Chang, “A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,” International Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005. [47] Ming-Da Tsai, Kun-You Lin and Huei Wang, “A 5.4-mW LNA Using 0.35-mm SiGe BiCMOS Technology for 3.1-10.6-GHz UWB Wireless Receivers,” in IEEE RFIC Symp., June 2005. [48] Ming-Da Tsai and Huei Wang, “A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 14, no. 11, pp. 522-524, Nov. 2004. [49] Ming-Da Tsai, Chin-Shen Lin, Chi-Hsueh Wang, Chun-Hsien Lien and Huei Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation Technique,” in IEEE RFIC Symp., pp. 417-420, June 2004. [50] K.T. Christensen, and A. Jorgensen,” Easy simulation and design of on-chip inductors in standard CMOS processes,” in IEEE ISCAS., pp.360-364, 1998. [51] Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A. Wachnik, T. J. King, and C. Hu, “ Frequency-Independent Equivalent-Circuit Model for On-Chip Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 38, pp. 419-426, March 2003. [52] Design Manual of MS/RF 0.18-mm CMOS, TSMC [53] C. P. Yue and S. S. Wong, “On-chip Spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743–752, May 1998. [54] C. Y. Lee, T. S. Chen, J. Deng, and C. H. Kao, “A simple Systematic Spiral Inductor Design With Perfected Q Improvement for CMOS RFIC Application,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 523–528, Feb. 2005. 197 [55] C. H. Wu, C.C. Tang, and S. I. Liu, “Analysis of on-chip spiral inductors using the distributed capacitance model,” IEEE J. Solid-State Circuits, SC-38, pp. 1040–1044, May 2003. [56] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, pp. 620–628, Apr. 2001. [57] M. W. Green et al., “Miniature multilayer spiral inductors for GaAs MMICs,” in GaAs IC Symp., 1989, pp. 303–306. [58] R. B. Merril et al., “Optimization of high-Q inductors for multilevel metal CMOS,” in Proc. IEDM, Dec. 1995, pp. 38.7.1–38.7.4. [59] C. C. Tang, C. H. Wu, and S. I. Liu, “Miniature 3-D Inductors in Standard CMOS Process, “IEEE J. Solid-State Circuits, vol. 37, pp. 771-780, April 2002 [60] M. D. Tsai, H. Wang, J. K. Kuan, and C. P. Chao, “A Miniature 4.3-7-GHz, 1-V CMOS LNA with Helical Inductors,” in IEEE European Microwave Conference, Oct. 2004. [61] H. M. Hsu, et al, “A 0.18-µm foundry RF CMOS technology with 70-GHz ft for single chip system solutions,” IEEE International Microwave Symp. Digest, pp. 1869-1872, 2001. [62] J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Microwave inductors and capacitors in standard multilevel interconnect silicon technology,” IEEE Trans. on Microwave Theory and Tech., vol. 44, pp. 100-104, Jan. 1996. [63] J.-B. Yoon, Y.-S. Choi, B.-I. Kim, Y. Eo, and E. Yoon, “CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs,” IEEE Electron Device Letters, Vol. 22, pp. 591-593, Oct. 2002. [64] C.-H. Chen, Y.-K. Fang, C.-W. Yang, and C. S. Tang, “A deep submicro CMOS process compatible suspending high-Q inductor,” IEEE Electron Device Letters, Vol. 22, pp. 522-523, Nov. 2001. [65] Design Manual of 2P4M 0.35-mm CMOS, TSMC [66] Design Manual of 2P4M 0.35-mm CMOS MEMS, TSMC [67] Design Manual of 1P9M 90-mm CMOS, TSMC [68] P. C. Huang, M. D. Tsai, H. Wang, C. H. Chen, and C. S. Chang, “A 114GHz VCO in 0.13mm CMOS Technology,” ISSCC Dig. Tech. Papers, Feb. 2005. [69] T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd ed. New York: Wiley, 2000. [70] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee, and S. S. Wong, “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1480–1488, Oct. 2001. 198 [71] Shih-Chieh Shin, Szu-Fan Lai, Kun-You Lin, Ming-Da Tsai, Huei Wang, Chih-Sheng Chang, and Yung-Chih Tsai, “18-26 GHz Low-Noise Amplifiers Using 130- and 90-nm Bulk CMOS Technologies,” in IEEE RFIC Symp., June 2005. [72] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification,” in Proc. Inst. Radio Eng., Aug. 1948, pp. 956–969. [73] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. Microwave Theory Tech., vol. 32, pp. 248–275, Mar. 1984. [74] C. S. Aitchison, “The advantages of microwave distributed amplifier and associated circuits,” Proc. MIOP90, pp. 17-29, April 1990 [75] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS Distributed Amplifier,” IEEE RFIC Symp., pp.13-106, 2003 [76] B. Y. Banyamin, M. Berwick, “Analysis of the performance of four-cascaded single-stage distributed amplifiers,” IEEE T-MTT vol. 48, pp.2657-2663, Dec. 2000 [77] K. L. Deng, T. W. Huang, and H. Wang, “Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE T-MTT vol. 51, pp.2188-2196, Nov. 2003 [78] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5-5.5-GHz CMOS distributed amplifier,”IEEE JSSC vol.35, pp. 231-239, Feb. 2000 [79] H. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed amplifier,” IEEE JSSC vol. 37, pp.985-993, Aug. 2002 [80] P. F. Chen, et al, “Silicon-on-sapphire MOSFET distributed amplifier with coplanar waveguide matching,” IEEE RFIC Symp., pp.161-164, 1998 [81] B. Kleveland, et al, “Monolithic CMOS distributed amplifier and oscillator,” IEEE ISSCC, pp. 70-71, 1999 [82] B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, “Performance of 1-10-GHz Traveling Wave Amplifiers in 0.18-mm CMOS,” IEEE MWCL, vol. 12, pp. 327-329, Sep. 2002 [83] H. Shigematsu, M. Sato, T. Hirose, F. Brewer and M. Rodwell, “40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE ISSCC, pp. 476-477, 2004 [84] R. E. Amaya, N. G. Tarr and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide,” IEEE RFIC Symp., pp. 193-196, 2004 199 [85] J. Gil, S. S. Song. H. Lee, H. Shin, ”A -119.2 dBc/Hz at 1 MHz, 1.5 mW, fully integrated, 2.5-GHz, CMOS VCO using helical inductors,” IEEE MWCL, vol. 13, pp. 457-459, Nov. 2003 [86] M. D. Tsai, H. Wang, J. F. Kuan, and C. P. Chao, “A miniature 4.3-7-GHz, 1-V CMOS LNA with helical inductors,” in IEEE European Microwave Conference, Amsterdam, Oct. 2004. [87] M. D. Tsai, Design of 5-GHz Low-Voltage and Gain-Controllable CMOS Low Noise Amplifier, M.S. Thesis, National Taiwan University, June 2003. [88] R. C. Liu, et.al., “Design and Analysis of DC-to-14-GHz and 22-GHz CMOS Cascode Distributed Amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp.1370-1374, Aug. 2004 [89] S. S. Lu, C. C. Meng, T. W. Chen, and H. C. Chen, “The origin of the kink phenomenon of transistor scattering parameter S22,” IEEE T-MTT vol. 49, pp.333-340, Feb. 2001. [90] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition, John Wiley, pp. 202-205, 2001. [91] H. M. Hsu, et al, “A 0.18-mm foundry RF CMOS technology with 70-GHz Ft for single chip system solutions,” IEEE International Microwave Symp. Digest, pp. 1869-1872, 2001 [92] C. H. Diaz, et al., “A 0.18-mm CMOS logic technology with dual gate oxide and low-k interconnect for high-performance and low-power applications,” IEEE VLSI Tech. Symp., pp. 11-12, 1999 [93] K. W. Kobayashi, R. Esfandiari and A. K. Oki, “A novel HBT distributed amplifier design topology based on attenuation compensation techniques,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2583-2589, Dec. 1994. [94] K. W. Kobayashi, R. Esfandiari, W. R. Jones, K. Minot, and B. Allen, “A 6-21-GHz monolithic HEMT 2 x 3 matrix distributed amplifier,” IEEE Guided Wave Letters, vol. 3, pp. 11-13, 1993 [95] Design Manual of 3P3M 0.35-mm SiGe BiCMOS, TSMC [96] B. Aganval, Q. Lee, D. Mensa, R. Pullela, J. Guthrie, M.J.W. Rodwell, “Broadband feedback amplifiers with AlInAs/GalnAs transferred substrate HBT,” IEE Electronics Letters, vol. 34, pp. 1357-1358, June 1998 [97] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, M.J.W. Rodwell, “Baseband amplifiers in transferred-substrate HBT technology,” IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symp., pp. 33-36, Nov. 1998. [98] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Aanalog Integrated Circuits, Fourth Edition, John Wiley, pp. 202-205, 2001. 200 [99] D. A. Hodges, “Darlington‘s contributions to transistor circuit design,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 46, pp. 102-104, Jan. 1999 [100] S. Mohammadi, J. W. Park, D. Pavlidis, J. L. Guyaux and J. C. Garcia, “Design optimization and characterization of high-gain GaInP/GaAs HBT distributed amplifiers for high-bit-rate telecommunication,” IEEE Trans. Microwave Theory Tech, vol. 48, pp. 1038-1044, June 2000. [101] K. L. Koon, Z. Hu, H. Aghvami and A. A. Rezazadeh, “High gain and ultra wideband SiGe/BiCMOS cascaded single stage distributed amplifier for 4G RF front-end applications,” IEEE Symp. On Personal, Indoor and Mobile Radio Communication Proceedings, pp. 2180-2184, 2003 [102] O. Wohlgemuth, P. Paschke and Y. Baeyens, “SiGe broadband amplifiers with up to 80 GHz bandwidth for optical applications at 43 Gbit/s and beyond,” in IEEE 33rd European Microwave Conf. Dig., 2003, pp.1087-1090 [103] K. W. Kobayashi, L. T. Tran, M. D. Lammert, A. K. Oki and D. C. Streit, “Transimpedance bandwidth performance of an HBT loss-compensated coplanar waveguide distributed amplifier,” Electronics Lett., vol. 32, no. 24, pp. 2287-2288, Nov. 1996. [104] S. Kudszus, A. Shahani, S. Pavan, D. K. Shaeffer and M. Tarsia, “A 46-GHz distributed transimpedance amplifier using SiGe Bipolar technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1387-1390. [105] J. Aguirre and C. Plett, “A 0.1-50 GHz SiGe HBT distributed amplifier employing constant-k m-derived sections,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 923-926. [106] J. Carroll, et.al., “0.25mm pHEMT 40Gb/s E/O modulator Drivers,” IEEE International Mircowave Sym., vol. 1, pp. 489-492, June 2002 [107] T. Otsuji, “Optical Fiber Systems: System Overview and Technology Tradeoffs”, 2001 IEEE GaAs IC Symp. Short Course. [108] K. Kobayashi, et.al., “A 2-50 GHz InAlAs/InGaAs-InP HBT Distributed Amplifier,” IEEE GaAs IC Sym., pp.207-210, Nov. 1996 [109] S. Masuda, et.al., “An Over-110-GHz InP HEMT Flip-Chip Distributed Baseband Amplifier With Inverted Microstripline Structure for Optical Transmission Systems,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp.1479-1484, Sept. 2003. [110] O. Wohlgemuth, et.al., “SiGe broadband amplifiers with up to 80 GHz bandwidth for optical applications at 43 Gbit/s and beyond,” in IEEE 33rd European Microwave Conf. Dig., pp.1087-1090, 2003. 201 [111] J. Kim et al., “A 12dBm 320GHz GBW Distributed Amplifier in a 0.12µm SOI CMOS,” ISSCC Dig. Tech. Papers, pp. 479-479, Feb., 2004. [112] H. Shigematsu et al., “40Gb/s CMOS Distributed Amplifier for Fiber- Optic Communication Systems,” ISSCC Dig. Tech. Papers, pp. 476-477, Feb., 2004. [113] Sonnet User’s Manual, Sonnet Software Inc., Liverpool, NY, 1998 [114] A. Worapishet, M. Chongcheawchamnan and S. Srisathit, “Broadband amplification in CMOS technology using cascaded single-stage distributed amplifier,” IEE Electronics Letters, vol. 38, pp. 675-676, July. 2002 [115] A. Worapishet, M. Chongcheawchamnan and S. Srisathit, “On the feasibility of cascaded single-stage distributed amplifier topology in digital technology,” IEEE Midwest Symp. on Circuits and Systems, pp. 354-257, 2002 [116] User Manual of Microwave Office, AWR Co., CA. [117] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp.36-47, June 2003. [118] UWB Multi-Band Coalition [Online]. Available: http://www.uwbmultiband.org [119] IEEE 802.15WPAN High Rate Alternative PHY Task Group 3a (TG3a) [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html [120] S. Stroh, “Ultra-wideband: Multimedia unplugged,” IEEE Spectrum, vol. 40, pp. 23–27, Sept. 2003. [121] K. Siwiak, “Ultra-wide band radio: Introducing a new technology,” in Proc. IEEE Vehicular Technology Conf., 2001, pp. 1088–1093. [122] A. Bevilacqua and Ali M Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, pp. 2259-2268, Dec. 2004 [123] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, 2000, pp. 209–212. [124] Y. Yun, M. Nishijima, M. Katsuno, H. Ishida, K. Minagawa, T. Nobusada, and T. Tanaka, “A fully integrated broad-band amplifier MMIC employing a novel chip-size package,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2930–2937, Dec. 2002. [125] P. Marsh, S. Chu, S. Lardizabal, R. Leoni III, S. Kang, R. Wohlert, A. Bowlby,W. Hoke, R. McTaggart, C. Whelan, P. Lemonias, P. McIntosh, and T. Kazior, “Low noise metamorphic HEMT devices and amplifiers on GaAs substrates,” in IEEE Microwave Theory and Techniques Symp. Dig. Papers, 1999, pp. 105–108. 202 [126] Y. Greshishchev, P. Schvan, J. L. Showell, M.-L. Xu, J. J. Ojha, and J. E. Rogers, “A fully integrated SiGe receiver IC for 10-Gb/s data rate,” IEEE J. Solid-State Circuits, vol. 35, pp. 1949–1957, Dec. 2000. [127] J. Cao, M. Green, A. Momtaz, K. Vakilian, D. Chung, K.-C. Jen, M. Caresosa, X. Wang, W.-G. Tan, Y. Cai, I. Fujimori, and A. Hairapetian, “OC-192 transmitter and receiver in standard 0.18-mm CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp. 1768–1780, Dec. 2002. [128] H.-T. Ahn and D. J. Allstot, “A 0.5–8.5-GHz fully differential CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol. 37, pp. 985–993, Aug. 2002. [129] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS Cascode Distributed Amplifier,” IEEE VLSI Circ. Symp., pp.139-140, 2003. [130] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5–5.5-GHz CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol. 35, pp. 231–239, Feb. 2000. [131] B. Razavi, Design of Integrated circuits for optical Communications: McGrawHill, 2003 [132] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice-Hall, N.J., 1997. [133] D. K. Shaffer, and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier, “ IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, Jun 1997 [134] M. D. Tsai, H. Wang, J. F. Kuan, and C. P. Chao, “A miniature 4.3-7-GHz, 1-V CMOS LNA with helical inductors,” in IEEE European Microwave Conference, Amsterdam, Oct. 2004. [135] T. K. K. Tsang and M. N. El-Gamal, “A fully integrated 1 V 5.8 GHz bipolar LNA,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’01), vol. 4, pp. 842–845, May 2001. [136] E. Imbs, I. Telliez, S. Detout, and Y. Imbs, “A low-cost-packaged 4.9–6 GHz LNA for WLAN application,” in IEEE MTT-S Dig., vol. 3, pp. 1569–1572, June 2003. [137] A. Ismail and A. Abidi, “A 3 to 10GHz LNA using a wideband LC-ladder matching network,” International Solid-State Circuit Conf. Dig. Tech. Papers, pp. 384-385, Feb. 2004. [138] D. Barras, F. Ellinger, H. Jackel, and W. Hirt, “A low supply voltage SiGe LNA for ultra-wideband frontends,” IEEE Microwave and Wireless Component Letters, vol. 14, no. 10, Oct. 2004 203 [139] F. Ellinger, D. Barras, M. Schmatz, and H. Jackel, “A low-power DC-7.8 GHz BiCMOS LNA for UWB and Optical communication,” in IEEE MTT-S Dig., pp. 13-16, June 2004. [140] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS Cascode Distributed Amplifier,” IEEE VLSI Circuit Symp., pp.139-140, 2003 [141] A. Bevilacqua and Ali M Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6GHz wireless receivers,” International Solid-State Circuit Conf. Dig. Tech. Papers, pp. 382-383, Feb. 2004. [142] W. Lee and I. W. Filanovsky, “2 V 3 GHz low-noise bipolar wideband amplifier,” in Proc. Canadian Conf. Electrical Computer Engineering, pp. 627–632, May 1999. [143] J. Sadowy et al., “Low noise, high linearity, wide bandwidth amplifier using a 0.35mm SiGe BiCMOS for WLAN applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp. 217–220, June 2002. [144] H. Ainspan, M. Soyuer, J.-O. Plouchart, and J. Burghartz, “A 6.25-GHz low DC power low-noise amplifier in SiGe,” in IEEE Custom Integrated Circuits Conf. , pp. 177–180, May 1997. [145] F. Bruccoleri et al., “Noise canceling in wideband CMOS LNAs,” International Solid-State Circuit Conf. Dig. Tech. Papers, pp. 406-407, Feb. 2002 [146] C. S. Aitchinson, “The intrinsic noise figure of the MESFET distributed amplifier,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 460-466, June 1985. [147] Design Manual of 3P3M 0.35-mm SiGe BiCMOS, TSMC [148] S. Mass, Microwave Mixer, 2nd Ed., Artech House, Inc., Massachusetts, 1993 [149] C. T. Li, D. Kubo, C. C. Han, C. C. Chen, C. H. Lien, H. Wang, R. M. Wei, C. H. Yang, T. D. Chiueh, J. Peterson, M. Kesteven, W. Wilson, "A wideband analog correlator system for AMiBA," to appear in SPIE Proceedings, Astronomical Telescopes and Instrumentation, June 2004 [150] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 365-373, Dec. 1968 [151] H. T. Friis, “Noise figure of radio receiver,” Proc. IRE, vol. 32, pp.419-422, July 1944. [152] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Wiley, 1990, pp. 504~506 204 [153] C. D. Hull, and R. G. Meyer, “A systematic approach to the analysis of noise in mixers,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 909-919, Dec. 1993 [154] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE J. Solid-State Circuits, vol. 32, pp. 1151-1155, July 1997 [155] B. Razavi, RF Microelectronics: PRENTICE HALL, 1998 [156] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed analog multiplier using InP HEMT’s,” IEEE Microwave and Guided Wave Lett., vol. 4. pp. 399~401, Dec. 1994 [157] Ravender Goyal, High-Frequency Analog Integrated Circuit Design, Wiley, 1994, pp. 291~296 [158] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed analog multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol. 4, pp. 399–401, Dec. 1994. [159] K. W. Kobayashi, R. M. Desrosiers, A. K. Oki, and D.C. Streit, “A DC-20-GHz InP HBT balanced analog multiplier for high-data-rate direct-digital modulation and fiber-optic receiver application,” in IEEE Trans. Microwave Theory Tech., vol. 48, pp. 194-202, Feb. 2000. [160] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, 2002, vol. 2, pp. 1241-1244. [161] B. Tzeng, C. H. Lien, H. Wang Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” in IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2564–2568, Nov. 2002. [162] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology,” in IEE Electronics Lett., vol. 39, pp. 637-638, April 2003. [163] C. H. Tay, K. S. Yeo, J. G. Ma, and M. A. Do, “A 0.1-8 GHz ultra-wideband high performance mixer for low power applications,” in IEEE APMC Proc., pp.420-422, Nov. 2003 [164] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L. Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active 20 GHz mixer in SiGe technology,” in IEE Electronics Lett., vol. 37, No 1, pp.36-37, Jan. 2001 [165] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz active mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782, Dec. 2000 205 [166] M. D. Tsai, C. S. Lin, C. H. Wang, C. H. Lien and H. Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” accepted by IEEE RFIC Symp., June 2004 [167] H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18-µm foundry RF CMOS technology with 70-GHz ft for single chip system solutions,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1869-1872, 2001 [168] K. Osafune and Y. Yamauchi, “20-GHz 5-dB-gain analog multipliers with AlGaAs/GaAs HBTs,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 518-520, Mar. 1994. [169] K. W. Kobayashi, L. T. Tran, S. Bui, A. K. Oki, D. C. Streit, and M. Rosen, “InAlAs/InGaAs HBT X-band double-balanced upconverter,” IEEE J. Solid-State Circuits, vol. 29, pp. 1238–1243, Oct. 1994. [170] Advanced Design System (ADS), Agilent [171] L. A. MacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” in IEEE Canadian Conference on Electric and Computer Engineering, vol. 1, pp. 365-368, May 1998 [172] Paul R. Gray and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits 3rd Edtion, Wiley, 1993, pp. 670~672 [173] Donald O. Pederson and Kartikeya Mayaram, Analog Integrated Circuits for Communication Principles, Simulation and Design, Kluwer Academic Publishers, 1991, pp. 422~431. [174] S. Colomines, T. Arnaud, R. Plana, T. Parra, and J. Graffeuil, “Design of high performaces Gilbert-Cell mixers for GSM/DCS front-ends,” IEEE RFIC Symposium, 1998, pp. 143~146. [175] J.R. Long and M.A. Copeland, “A 1.9 GHz low-voltage silicon bipolar receiver front-end for wireless personal communications systems,” IEEE Journal of Solid-State Circuits, Dec. 1995, pp. 1438~1448. [176] Design Manual of 0.35-mm 3P3M SiGe BiCMOS, TSMC [177] K. L. Deng and H. Wang, “A 3-33 GHz PHEMT MMIC distributed drain mixer,” in IEEE RFIC Symp. Dig., 2002, pp. 151-154. [178] Y. Imai, S. Kimura, Y. Umeda, and T. Enoki, “DC to 38-GHz distributed analog multiplier using InP HEMT’s,” in IEEE Microwave Guided Wave Lett., vol. 4, pp. 399–401, Dec. 1994. [179] L. M. Burns, J. F. Jensen, W. E. Stanchina, R. A. Metzger, and Y. K. Allen, “DC-to-Ku-band MMIC InP HBT double-balanced active mixer,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 1991, pp. 124–125. 206 [180] J. Glenn, M. Case, D. Harame, B. Meyerson, and R. Poisson, “12-GHz Gilbert mixers using a manufacturable Si/Si–Ge epitaxial-base bipolar technology,” in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting, Minneapolis, MN, 1998, pp. 186–189. [181] H. Wang, “A 1-V multi-gigahertz RF mixer core in 0.5-mm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 1998, pp. 370–371. [182] B. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2564–2568, Nov. 2002. [183] I. Gresham and A. Jenkins, “a low-noise broadband SiGe mixer for 24-GHz ultra-wideband automotive applications,” in IEEE RAWCON Proc., pp. 361-364, 2003 [184] A. Y. Umeda, C. T. Matsuno, A. K. Oki, G. S. Dow, K.W. Kobayashi, D. K. Umemoto, and M. E. Kim, “A monolithic GaAs HBT upconverter,” in IEEE Microwaves and Millimeter-Wave Monolithic Circuits Symp. Dig., Dallas, TX, 1990, pp. 77–80. [185] C. C. Meng, S. S. Lu, M.H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology,” Electronics Lett., vol. 39, pp. 637-638, April 2003. [186] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, 2002, vol. 2, pp. 1241-1244. [187] P. Weger, G. Schultes, L. Treitinger, E. Bertagnolli, and K. Ehinger, “Gilbert multiplier as an active mixer with conversion gain bandwidth of up to 17 GHz,” Electronics Lett., vol. 27, no. 7, pp. 570–571, Mar. 1998. [188] K. W. Kobayashi, L. T. Tran, S. Bui, A. K. Oki, D. C. Streit, and M. Rosen, “InAlAs/InGaAs HBT X-band double-balanced upconverter,” IEEE J. Solid-State Circuits, vol. 29, pp. 1238–1243, Oct. 1994. [189] J. Wholey, I. Kipnis, and C. Snapp, “Silicon bipolar double balanced active mixer MMIC’s for RF and microwave applications up to 6 GHz,” in IEEE Microwaves and Millimeter-Wave Monolithic Circuits Symp. Dig., Long Beach, CA, 1989, pp. 133–137. [190] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, L. Treitinger, “30 GHz active mixer in Si/SiGe bipolar technology,” in IEEE APMC Proc., pp.780-782, Dec. 2000 [191] S. Hackl, M. Wurzer, J. Bock, T. F. Meister, H. Knapp, K. Aufinger, L. Treitinger, A. L. Scholtz, “Low-noise, low-power monolithically integrated active 207 20 GHz mixer in SiGe technology,” IEE Electronics Lett., vol. 37, No 1, pp.36-37, Jan. 2001 [192] Sonnet User’s Manual, Sonnet Software, Liverpool, NY, 1998. [193] Ansoft HFSS User’s Manual, Ansoft Co.
|