|
[1]T. K. K. Tsang, and M. N. El-Gamal, “Gain controllable very low voltage (<1 V) 8-9 GHz integrated CMOS LNAs, ” in 2002 IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 205-207, June 2003. [2]R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE J. Solid State Circuits, vol. 37, no. 7, pp. 852-856, July 2002. [3]J. Gil, K. Han, and H. Shin, “13 GHz 4.67 dB NF CMOS low-noise amplifier,” Electronic Letters, vol. 39, Issue 14, pp. 1056-1058, 10 July 2003. [4]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997. [5]Elkim Roa, J.N. Soares and W. Van Noije, “A Methodology for CMOS Low Noise Amplifier Design,” Proceedings of the 16th Symposium on Integrated Circuits and Systems Design,2003 [6]H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, pp. 765–772, May 2000. [7]E. Abou-Allam, T. Manku and E.I. El-Masry, “Q-enhanced 1.9 GHz tuned CMOS RF amplifier,” Electronic Letters, v.32, No 5, 29th. Feb. 1996, pp. 448-449 [8]Pietro Andreani, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 835-841, issue 9, Sept. 2001. [9]David J. Cassan “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 427–435, March 2003. [10]Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice-Hall, Inc., 1997. [11]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge Univ. Press, 2004. [12]H. A. Haus et al., “Representation of Noise in Linear Twoports,” Proc. IRE, vol. 48, pp. 69-74, Jan. 1960. [13]B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2000. [14]M. J. O. Strutt and A. van der Ziel, “The Causes for the increase of the Admittances of Modern High-Frequency Amplifier Tubes on Short Waves,” Proc. IRE, v.26,1936, pp. 1011-32 [15]Chih-Lung Hsiao, Ro-Min Weng, Kun-Yi Lin, “A 2 V 2.4 GHz Fully Integrated CMOS LNA with Q-enhancement circuit for SOC design,” IEICE Trans. Electron., June 2003 [16]A. Rafougaran, J. Y.-C. Chang, M. Rafougaran, and A. A. Abidi, “A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE J. Solid-State Circuits, vol. 31, pp. 880–889, July 1996. [17]Q. Huang et al., “Broadband 0.25-µm CMOS LNAs with sub-2-dB NF for GSM Applications,” in Proc. IEEE Custom Integrated Circuits Conf., May 1998, pp. 67-70. [18]H. Hjelmgren and A. Litwin, “Small-signal substrate resistance effect in RF CMOS identified through device simulations,” IEEE Trans. Electron Devices, vol. 48, pp. 397–399, Feb. 2001. [19]F. Behbahani et al., “2.4-GHz low-IF receiver for wideband WLAN in 0.6-µm CMOS architecture and front-end,” IEEE J. Solid-State Circuits, vol. 35, pp. 1908–1916, Dec. 2000. [20]G. Hayashi, H. Kimura, H. Simomura, and A. Matsuzawa, “A 9-mW 900-MHz CMOS LNA with mesh arrayed MOSFETs,” in Symp. VLSI Circuits Dig. Tech. Papers, June 1998, pp. 84–85. [21]Choong-Yul Cha and Sang-Gug Lee, “A 5.2-GHz LNA in 0.35-µm CMOS Utilizing Inter-Stage Series Resonance and Optimizing the Substrate Resistance,” IEEE J. Solid-State Circuits, vol. 38, No.4, pp. 669–672, April 2003. [22]Hong-Sun Kim, et. al. “A 2.4 GHz CMOS Low Noise Amplifier using an Inter-stage Matching Inductor,” 42nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 1040-1043, 1999. [23]Thomas H. Lee, Hirad Samavati, and Hamid R. Rategh, “5-GHz CMOS Wireless LANs,” IEEE Trans. On Microwave Theory and Techniques, Vol. 50, No. 1, January 2002. [24]H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18-µm foundry RF CMOS technology with 70-GHz fT for single chip system solutions,“ in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1869-1872, 2001. [25]C. H. Diaz, et al., “A 0.18-µm CMOS logic technology with dual gate oxide and low-k interconnect for high-performance and low-power applications,” IEEE VLSI Tech. Symp., pp. 11-12, 1999. [26]T. Manku, “Microwave CMOS-device physics and design,” IEEE J. Solid-State Circuits, vol. 34, pp. 277-285, 1999. [27]Kwangseok Han, Hyungcheol Shin, and Kwyro Lee “Analytical Drain Thermal Noise Current Model Valid for Deep Submicron MOSFETs,” IEEE Trans. On Electron Devices, vol. 51, no. 2, Feb. 2004. [28]Advanced Design System User’s Guide, Agilent Technologies Inc. [29]Sonnet user’s manual, Sonnet Software, Inc. [30]U. Erben, H. Schumacher, A. Schuppen, J. Arndt, “Application of SiGe heterojunction bipolar transistors in 5.8 and 10 GHz low-noise amplifiers,” Electron. Lett., vol. 34, no. 15, pp. 1498- 1500, Jul. 1998. [31]D. Zoschg, W. Wilhelm, T.F. Meister, H. Knapp, H.-D. Wohlmuth, K. Aufinger, M. Wurzer, J. Bock, H. Schafer, and A. Scholtz, “2dB noise figure, 10.5GHz LNA using SiGe bipolar technology,” Electron. Lett., vol. 35, no. 25, pp. 2195-2196, Dec. 1999. [32]H. Knapp, D. Zoschg,T. Meister,K. Aufinger, S. Boguth, L. Treitinger, “15 GHz wideband amplifier with 2.8 dB noise figure in SiGe bipolar technology,” in IEEE RFIC Symp. Dig., 2001, pp. 287-290. [33]Ren-Chieh Liu, Chung-Rung Lee, Huei Wang and Chomg-Kuang Wang, “A 5.8-GHz Two-Stage High-Linearity Low-Voltage Low Noise Amplifier in a 0.35-µm CMOS Technology,” in 2002 IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 221-224. [34]B. Razavi, RF Microelectronics, Prentice-Hall, 1998.
|