跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫國榮
研究生(外文):Kuo-Jung Sun
論文名稱:微波金氧半場效電晶體低雜訊放大器改善雜訊的新方法
論文名稱(外文):New Methods to Improve Noise Figure of Microwave CMOS LNAs
指導教授:王暉
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:71
中文關鍵詞:低雜訊放大器金氧半場效電晶體改善雜訊微波
外文關鍵詞:LNAlow noise amplifierCMOSnoise improvementmicrowave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的在於研究使用商用標準金氧半場效電晶體積體電路製程來設計具有更佳特性之低雜訊放大器。論文中使用了兩種改善雜訊特性的方法設計金氧半場效電晶體之低雜訊放大器。
第一個用來改善低雜訊放大器雜訊特性的方法是選擇電晶體大小以達到雜訊最佳化的目的。本論文所展現的方法由於是將晶片上電感的寄生電阻直接納入低雜訊的設計過程,可以比一般傳統的方法得到更合適的電晶體。此電路在10 GHz的頻帶中,量測結果顯示11.25 dB的增益,以及低於3 dB的雜訊指數。
第二個用來改善低雜訊放大器雜訊特性的方法是在串極串基架構(cascode)中間以並聯共振的方式,進一步降低整個放大器的雜訊。此方法將上一個電路的雜訊進一步降低為2.5 dB(改善了約0.5 dB)。
The purpose of this thesis is to develop low noise amplifiers employing commercial standard CMOS processes to achieve better noise performance. Two methods to improve the noise characteristics were used to design LNAs.
The first approach for improving noise characteristics of the LNA is using the device-size selection to optimize the noise performance. By incorporating the series resistances of the on-chip inductors into the noise optimization procedure, the optimum device size can be selected more appropriately. The 10 GHz LNA has a measured gain 11.25 dB with the noise figure below 3 dB.
The second approach for improving noise characteristics of the LNA is using the parallel-resonant technique between the two stages of the cascode LNA, the LNA achieved measured noise figure of 2.5 dB, which is about 0.5 dB noise figure improvement over the first circuit.
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Contributions 3
1.4 Chapter Outlines 4
CHAPTER 2 INTRODUCTION OF LOW NOISE AMPLIFIERS 5
2.1 Operation of Low Noise Amplifiers 5
2.2 Methods to Improve the Noise Characteristics of Low Noise Amplifiers 20
CHAPTER 3 LOW NOISE AMPLIFIERS USING AN IMPROVED NOISE-OPTIMIZATION METHOD 28
3.1 The Conventional Noise-Optimization Method 30
3.2 The Improved Noise-Optimization Method 33
3.3 LNA Design 35
3.4 LNA Measurements 40
3.5 Summary 44
CHAPTER 4 LOW NOISE AMPLIFIERS USING PARALLEL-RESONANT TECHNIQUE 45
4.1 Motivation 46
4.2 Design Principle 49
4.3 LNA Design and Measurements 57
4.4 Summary 64
CHAPTER 5 CONCLUSIONS 65
REFERENCES 68
[1]T. K. K. Tsang, and M. N. El-Gamal, “Gain controllable very low voltage (<1 V) 8-9 GHz integrated CMOS LNAs, ” in 2002 IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 205-207, June 2003.
[2]R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE J. Solid State Circuits, vol. 37, no. 7, pp. 852-856, July 2002.
[3]J. Gil, K. Han, and H. Shin, “13 GHz 4.67 dB NF CMOS low-noise amplifier,” Electronic Letters, vol. 39, Issue 14, pp. 1056-1058, 10 July 2003.
[4]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
[5]Elkim Roa, J.N. Soares and W. Van Noije, “A Methodology for CMOS Low Noise Amplifier Design,” Proceedings of the 16th Symposium on Integrated Circuits and Systems Design,2003
[6]H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, pp. 765–772, May 2000.
[7]E. Abou-Allam, T. Manku and E.I. El-Masry, “Q-enhanced 1.9 GHz tuned CMOS RF amplifier,” Electronic Letters, v.32, No 5, 29th. Feb. 1996, pp. 448-449
[8]Pietro Andreani, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 835-841, issue 9, Sept. 2001.
[9]David J. Cassan “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 427–435, March 2003.
[10]Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice-Hall, Inc., 1997.
[11]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge Univ. Press, 2004.
[12]H. A. Haus et al., “Representation of Noise in Linear Twoports,” Proc. IRE, vol. 48, pp. 69-74, Jan. 1960.
[13]B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2000.
[14]M. J. O. Strutt and A. van der Ziel, “The Causes for the increase of the Admittances of Modern High-Frequency Amplifier Tubes on Short Waves,” Proc. IRE, v.26,1936, pp. 1011-32
[15]Chih-Lung Hsiao, Ro-Min Weng, Kun-Yi Lin, “A 2 V 2.4 GHz Fully Integrated CMOS LNA with Q-enhancement circuit for SOC design,” IEICE Trans. Electron., June 2003
[16]A. Rafougaran, J. Y.-C. Chang, M. Rafougaran, and A. A. Abidi, “A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE J. Solid-State Circuits, vol. 31, pp. 880–889, July 1996.
[17]Q. Huang et al., “Broadband 0.25-µm CMOS LNAs with sub-2-dB NF for GSM Applications,” in Proc. IEEE Custom Integrated Circuits Conf., May 1998, pp. 67-70.
[18]H. Hjelmgren and A. Litwin, “Small-signal substrate resistance effect in RF CMOS identified through device simulations,” IEEE Trans. Electron Devices, vol. 48, pp. 397–399, Feb. 2001.
[19]F. Behbahani et al., “2.4-GHz low-IF receiver for wideband WLAN in 0.6-µm CMOS architecture and front-end,” IEEE J. Solid-State Circuits, vol. 35, pp. 1908–1916, Dec. 2000.
[20]G. Hayashi, H. Kimura, H. Simomura, and A. Matsuzawa, “A 9-mW 900-MHz CMOS LNA with mesh arrayed MOSFETs,” in Symp. VLSI Circuits Dig. Tech. Papers, June 1998, pp. 84–85.
[21]Choong-Yul Cha and Sang-Gug Lee, “A 5.2-GHz LNA in 0.35-µm CMOS Utilizing Inter-Stage Series Resonance and Optimizing the Substrate Resistance,” IEEE J. Solid-State Circuits, vol. 38, No.4, pp. 669–672, April 2003.
[22]Hong-Sun Kim, et. al. “A 2.4 GHz CMOS Low Noise Amplifier using an Inter-stage Matching Inductor,” 42nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 1040-1043, 1999.
[23]Thomas H. Lee, Hirad Samavati, and Hamid R. Rategh, “5-GHz CMOS Wireless LANs,” IEEE Trans. On Microwave Theory and Techniques, Vol. 50, No. 1, January 2002.
[24]H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18-µm foundry RF CMOS technology with 70-GHz fT for single chip system solutions,“ in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1869-1872, 2001.
[25]C. H. Diaz, et al., “A 0.18-µm CMOS logic technology with dual gate oxide and low-k interconnect for high-performance and low-power applications,” IEEE VLSI Tech. Symp., pp. 11-12, 1999.
[26]T. Manku, “Microwave CMOS-device physics and design,” IEEE J. Solid-State Circuits, vol. 34, pp. 277-285, 1999.
[27]Kwangseok Han, Hyungcheol Shin, and Kwyro Lee “Analytical Drain Thermal Noise Current Model Valid for Deep Submicron MOSFETs,” IEEE Trans. On Electron Devices, vol. 51, no. 2, Feb. 2004.
[28]Advanced Design System User’s Guide, Agilent Technologies Inc.
[29]Sonnet user’s manual, Sonnet Software, Inc.
[30]U. Erben, H. Schumacher, A. Schuppen, J. Arndt, “Application of SiGe heterojunction bipolar transistors in 5.8 and 10 GHz low-noise amplifiers,” Electron. Lett., vol. 34, no. 15, pp. 1498- 1500, Jul. 1998.
[31]D. Zoschg, W. Wilhelm, T.F. Meister, H. Knapp, H.-D. Wohlmuth, K. Aufinger, M. Wurzer, J. Bock, H. Schafer, and A. Scholtz, “2dB noise figure, 10.5GHz LNA using SiGe bipolar technology,” Electron. Lett., vol. 35, no. 25, pp. 2195-2196, Dec. 1999.
[32]H. Knapp, D. Zoschg,T. Meister,K. Aufinger, S. Boguth, L. Treitinger, “15 GHz wideband amplifier with 2.8 dB noise figure in SiGe bipolar technology,” in IEEE RFIC Symp. Dig., 2001, pp. 287-290.
[33]Ren-Chieh Liu, Chung-Rung Lee, Huei Wang and Chomg-Kuang Wang, “A 5.8-GHz Two-Stage High-Linearity Low-Voltage Low Noise Amplifier in a 0.35-µm CMOS Technology,” in 2002 IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 221-224.
[34]B. Razavi, RF Microelectronics, Prentice-Hall, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top