跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張翔至
研究生(外文):Hsiang-Chih Chang
論文名稱:鎊線轉接之高頻補償及設計
論文名稱(外文):Compensation and Design for Bonding-Wire at High Frequency Band
指導教授:吳瑞北
指導教授(外文):Ruey-Beei Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:87
中文關鍵詞:鎊線補償
外文關鍵詞:bonding-wirecompensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一系列的改良,藉以提昇鎊線轉接的電氣特性。首先,為了瞭解鎊線轉接的特性,我們先萃取其等效電路;由等效電路我們得知,傳統的鎊線轉接為電感性。接著,我們提出了一個共振的架構,藉由控制適當地控制共振頻率點的位置來和原有頻寬結合,藉此來製造更大的頻寬。在本文中,以共振頻率40GHz而言,反射損耗在13dB以下的頻寬為37%。穿透損耗亦在0.8dB以上。另一個架構為低阻抗傳輸線補償,然而該架構只能降低原頻寬內的反射損耗而無法增加額外的頻寬。剩下的一種則是多段傳輸線串接補償,本文中以最簡單的兩段傳輸線為例。可以看到從直流到60GHz的反射損耗都在15dB以下。
雖然上述的設計理念滿不錯的,但是這種設計方式會損耗晶片在傳播方向的面積,且上述三種方式僅是治標而非治本的方式。真正治本的方式是做好阻抗匹配的工作,讓輸入等效阻抗值接近於系統阻抗。在此,增加鎊線接點附近的傳輸線寬度來增加電容值,以補償轉接的電感效應,因而改善轉接的效能。我們定義頻寬為反射損耗低於20dB的區域。基本上文中所提到的四個架構中,每個補償後的架構皆有增加40%以上。在此證明該種補償方式相當地簡單亦實用。
接著,結合兩大類補償的優點。在平行補償後的架構中,藉由犧牲一部分的反射損耗來增加額外的頻寬。第五章的砷化鎵到氧化鋁基板的例子中,頻寬從原先未補償前的16GHz到補償之後的47GHz,將近有200%的改善。而在降頻的同介質轉同介質的實驗之中,補償後額外增加的頻寬亦有50%,這點和同介質轉接的模擬相吻合。
To improve the electrical performance of the bonding-wire transition, a step by step procedure is proposed in this thesis. To begin with, the equivalent circuit of the transition is extracted from the full-wave simulation result by HFFS, which shows an overall inductive effect. Then, a matching circuit which resembles a resonant phenomenon is proposed to achieve minimum reflection in the desired frequency band by simply changing the length and width of the additional transmission line. The extra relative bandwidth, when insertion loss is lower than -13dB, is 37% when the resonant frequency is set to be 40GHz. Another is low impedance line compensation. It doesn’t increase the bandwidth but let the return loss better in low frequency bands. The other is multi-line compensation, this one have the broadest bandwidth, says -15db, from DC to 60GHz in this chapter. But it is hard and complex to design.
In order to have a wider bandwidth and better response, it needs some essential compensation. In chapter 4, it tries to enlarge the capacitances locally. For example, the return loss is set to be -20dB and the bandwidth are as large as possible. Structures which are list in chpater4 all have improvement of additional relative bandwidth at least 40%. This result means that the compensation is useful and easy to design. Then, add a short transmission line, the return loss the tradeoff for bandwidth. The example in chapter5, its bandwidth is 47GHz after compensation for an excess relative bandwidth of 200%.The experiment in chapter5 also has an additional bandwidth about 50%. This is reasonable since both the substrate1 and 2 are the same material and the discontinuity is already small before compensation.
Abstract (Chinese) iv
Abstract v
Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1 Research motivation 1
1.2 Literature Survey 2
1.3 Chapter outlines 3
Chapter 2 Conventional Bonding-Wire Transition 7
2.1 Bonding-Wire 7
2.2 Simple equivalent circuit 8
2.3 Influence of wire parameters 9
Chapter 3 Longitudinal Compensation by 17
3.0 Introduction 17
3.1 Single stub matching 18
3.2 Low impedance transmission line compensation 19
3.2.1 Low impedance line with 20
3.2.2 Low impedance line with 21
3.3 Compensation with multi-transmission lines 21
3.4 Conclusion 23
Chapter 4 Lateral Parallel Plane Capacitance Compensation 37
4.1 Add the width of transmission line 38
4.2 Compensation on both sides 39
4.3 Realization in different kinds of substrates 40
4.3.1 10mil Al2O3 to 10mil Al2O3 41
4.3.2 10mil Al2O3 to 13mil Al2O3, type I 42
4.3.3 10mil Al2O3 to 13mil Al2O3, type II 42
4.3.4 10mil Al2O3 to 10mil GaAs 43
4.4 Experiment 43
4.5 Conclusion 44
Chapter 5 Composition Compensation of bonding-wire 64
5.1 The step of realization 64
5.1.1 Get the s-parameters and equivalent circuit 65
5.1.2 Choose proper capacitances 65
5.1.3 Add another transmission line 66
5.2 Experiment 67
5.2.1 Experiment analysis and instrument setting 67
5.2.2 Comparison 67
5.3 Experiment II 69
5.4 Conclusion 69
Chapter 6 Conclusion 82
6.1 Conclusion 82
Ref 85
[1]F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, ‘‘Modeling and characterization of the bonding-wire interconnection,’’ IEEE Tran. Microwave Theory Tech., vol. 49, no.1, pp. 142-150, Jan.2001.
[2]Jin-Yang Kim, Hai-Young Lee, Jae-Hyun Lee, and Dong-pil Chang, ‘’Wideband characterization of multiple bondwires for millimeter-wave applications,’’ in IEEE Asia-Pacific Microwave Conf., Sydney, NSW, Australia Dec. 2000, pp. 1265-1268.
[3]T. P. Budka, ‘’Wide-bandwidth millimeter-wave bond-wire interconnects,’’ IEEE Trans. Microwave Theory Tech., vol. 49, no. 4, pp. 715-718, April 2001.
[4]U. Goebel, ‘’DC to 100GHz chip-to-chip interconnects with reduced tolerance sensitivity by adaptive wirebonding,’’ in IEEE 3rd Topical Meeting on Electrical Performance of Electronic Packaging, Monterey, CA, USA, Nov. 1994, pp. 182-185.
[5]C. T. Tsai, “Package inductance characterization at high frequencies,” IEEE Trans. Advanced Packaging, vol. 17, no. 2, pp. 175-181, May 1994.
[6]B. Noble, and J. W. Daniel, Applied Linear Algebra. New Jersey: Prentice Hall, 1988.
[7]W. Heinrich, A. Jentzsch, and H. Richter, “Flip-chip interconnects for frequencies up to W band,” IEEE Electronics Letters, vol. 37, no. 3, pp. 180-181, Feb. 2001.
[8]C. L. Wang, C. T. Hwang, R. B. Wu, and C. H. Chen, “A resonant flip-chip design with controllable transition band,” in IEEE MTT-S Int. Symp. Dig., vol. 4, Anaheim, CA, USA, Jun. 1999, pp. 1423-1426.
[9]N. Iwasaki, F. Ishitsuka, and T. Kato, “High performance flip-chip technique for wide-band modules,” in IEEE 5th Topical Meeting on Electrical Performance of Electronic Packaging, Napa, CA, USA, Oct. 1996, pp. 207-209.
[10]A. Jentzsch, and W. Heinrich, “Optimization of flip-chip interconnects for millimeter-wave frequencies,” in IEEE MTT-S Int. Symp. Dig., vol. 2, Anaheim, CA, USA, Jun. 1999, pp. 637-640.
[11]N. H. Huynh, and W. Heinrich, K. Hirche, W. Scholz, M. Warth, W. Ehrlinger, “Optimized flip-chip interconnect for 38 GHz thin-film microstrip multichip modules,” in IEEE MTT-S Int. Symp. Dig., vol. 1, Boston, MA, USA, Jun. 2000, pp. 69-72.
[12]A. Jentzsch, and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 871-878, May 2001.
[13]F. J. Schmuckle, A. Jentzsch, H. Oppermann, K. Riepe, W. Heinrich, “W-band flip-chip interconnects on thin-film substrate,” in IEEE MTT-S Int. Symp. Dig., vol. 3, Seattle, WA, USA, Jun. 2002, pp. 1393-1396.
[14]C. L. Wang, and R. B. Wu, “Modeling and design for electrical performance of wideband flip-chip transition,” IEEE Trans. Advanced Packaging, accepted for publications.
[15]C. L. Wang, and R. B. Wu, “Wideband coplanar waveguide flip-chip transition,” Proc. National Symposium on Telecommunications, Nantou, Taiwan, Dec. 2003, RF-4-1.
[16]C. L. Wang, and R. B. Wu, “A locally matching technique for broadband flip-chip transition design,” in IEEE MTT-S Int. Symp. Dig., vol. 3, Seattle, WA, USA, Jun. 2002, pp.1397-1400.
[17]C. L. Wang, and R. B. Wu, “Locally matching design for flip-chip transition,” in IEEE Asia-Pacific Microwave Conf., vol. 2, Taipei, Taiwan, Dec. 2001, pp.547-549.
[18]D. M. Pozar, Microwave Engineering, New York: Addison-Wesley Publishing Company, Inc., 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃士訪(1999)。資訊科技融入地理科教學之應用。教育部電子計算機中心簡訊,8803,25-34。
2. 張國恩(1999)。資訊科技融入教學之內涵與實施,資訊與教育雜誌,72,2-9。
3. 徐新逸、吳佩謹(2002)。資訊融入教學的現代意義與具體作為。教學科技與媒體,59,63-73。
4. 邱瓊慧(2002)。中小學資訊科技融入教學之實踐。資訊與教育雜誌,88,3-9。
5. 岳修平(1999)。網路教學於學校教育之應用。課程與教學季刊,2(4),61-76。
6. 何榮桂、顏永進(2001)。資訊融入健康與體育領域教學。教師天地,112,71-75。
7. 王承斌(2000)。調和科技與人文。技藝教育雙月刊,30,17-19。
8. 王全世(2000)。對資訊科技融入各科教學之資訊情境的評估標準,資訊與教育雜誌,77,36-47。
9. 黃武元、林士甫(2002)。資訊科技融入自然與生活科技-以透鏡成像與光學儀器的對話為例。資訊與教育雜誌,88,10-20。
10. 溫明正(1998)。教育部中小學資訊教育教師在職進修與教學應用之規劃。資訊與教育,68,17-20。
11. 溫明正(2000)。資訊科技融入各科教學之應用。教學科技與媒體,50,54-61。
12. 劉世雄(2001)。國小教師運用資訊科技融入教學策略之探討,資訊與教育雜誌,78,60-66。
13. 戴建耘 黃國峰(1999)。資訊融入各科教學之線上教導者建置模式研究—以國中英語科為例。資訊與教育。72,頁26-40。
14. 韓善民(2001)。我國資訊教育發展現況與展望。資訊與教育,第81期,頁7-12。
15. 顏永進、何榮桂(2001),資訊融入健康與體育領域教學。教師天地,112,71-77。