跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃仁安
研究生(外文):Jen-An Huang
論文名稱:非線性相位雜訊對高速相位調變光通訊系統之影響及驗證
論文名稱(外文):Effect of Nonlinear Phase Noise on Phase-ShiftKeying Signals in Lightwave Systems and ItsExperimental Verification
指導教授:何鏡波
指導教授(外文):Keang-Po Ho
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:75
中文關鍵詞:光纖通訊非線性相位雜訊實驗差分相位調變
外文關鍵詞:optical fiber communicationnonlinear phase noiseexperimentDPSK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文分析自相位調變(self-phase modulation)所引發的非線性相位雜訊的離散以
及連續模型。非線性相位雜訊和接收電場的聯合特徵函式被導出並用來求得接收相位
訊號的機率分布。其中,近似以及精確的相位移鍵調變(BPSK)和相位差分調變(DPSK)
信號的機率密度函式的數學解析式被導出;精確模型考慮了非線性相位雜訊以及放大
器雜訊相位的非獨立關係,而近似模型假設非線性相位雜訊和放大器雜訊相位是獨立
的。分別在離散及連續的模型下,精確以及近似的相位移鍵調變和相位差分調變信號
錯誤機率被計算並比較。
非線性相位雜訊的理論由一組光跨距(fiber span)所組成最小實驗架構來驗證,其
中含有一個光放大器以及一段固定距離的光纖。訊號雜訊比罰分(signal-to-noise ratio
penalty)被用來評估計算系統的效能降低,而此效能降低是受到非線性相位雜訊的影
響。實驗的結果顯示 在簡化的匹配濾波器分析下所得出的訊號雜訊比罰分,可以更
普遍的適用在一般的接受器。實驗量測結果與理論分析差距只有在0.15 分貝(dB)。
Both discrete and distributed models of the self-phase modulation (SPM) induced nonlinear
phase noise are derived. The joint characteristic function of the received electric field
and the nonlinear phase noise is provided for both discrete and distributed models. Both
approximated and exact probability density function for BPSK and DPSK systems are
given by an analytical expression. The exact model includes the dependence between the
nonlinear phase noise and the phase of amplifier noise, and the approximated model assumes
the independence between nonlinear phase noise and the phase of amplifier noise. Both
exact and approximated error probabilities for BPSK and DPSK systems are evaluated
in both discrete and distributed models, and compared with each other. A single-span
experimental setup, the minimal setup to study the nonlinear phase noise, is proposed to
verify the theoretical model of SPM-induced nonlinear phase noise by the measurement of
signal-to-noise ratio (SNR) penalty. The experimental results show that the SNR penalty
from the simplified matched-filter based analysis is applicable to more general receivers.The discrepancy between the results of the experiment and the theory is within ±0.15 dB.
Contents ii
List of Figures iv
List of Tables vi
Acknowledgements vii
1 Introduction to Optical Communication Systems 1
1.1 Introduction 1
1.2 DPSK Transmitter 6
1.3 DPSK Receiver 10
1.4 Fiber Channel 11
1.5 Erbium-doped fiber amplifier (EDFA) 12
2 Nonlinear Phase Noise 13
2.1 Nonlinear Kerr effects 13
2.2 SPM-induced nonlinear phase noise 15
2.3 Mathematical model 15
2.3.1 Discrete model of nonlinear phase noise 16
2.3.2 The distributed model of nonlinear phase noise 31
3 Experimental Verification of the Model of Nonlinear Phase Noise 42
3.1 Themathematical model of the experiment 42
3.2 Setup of the experiment 47
3.3 Experimental results 50
4 Conclusion 55
5 Bibliography 57
[1] A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.,
vol. 23, pp. 115-130, 2005.
[2] P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25 Gb/s
RZ-DQPSK signals with 25 GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon.
Technol. Lett., vol. 15, pp. 473-475, 2003.
[3] N. Yoshikane and I. Morita, “1.14 b/s/Hz spectrally-efficient 50 × 85.4 Gb/s transmission over 300
km using copolarized CS-RZ DQPSK signals,” in Proc. OFC 2004, Los Angeles, CA,
postdeadline paper PDP38.
[4] A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S.
Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C.
Xu, X. Wei, and D. M. Gill, “2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF
using RZ-DPSK format and all-Raman-amplified spans,” in Proc. OFC 2002, Anaheim, CA,
postdeadline paper FC2, pp. 875-877.
[5] J. X. Cai, D. G. Foursa, L. Liu, C. R. Davidson, Y. Cai, W. W. Patterson, A. J. Lucero, B. Bakhshi,
G. Mohs, P. C. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M.
Nissov, A. N. Pilipetskii, and N. S. Bergano, “RZ-DPSK field trial over 13,100 km of installed
non slope-matched submarine fibers,” in Proc. OFC 2004, Los Angeles, CA, 2004, postdeadline
paper PDP34.
[6] C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van
der Wagt, Y. Akasaka, D. Harris, D.Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40 G
transmission over trans-Pacific distance (10,000 km) casing CSRZ-DPSK, enhanced FEC and
all-Raman amplified 100 km UltraWave fiber spans,” in Proc. OFC 2003, Atlanta, GA,
postdeadline paper PD18.
[7] K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, S. Kuroda, and T. Mizuochi, “A comparative study of
10 Gb/s RZ-DPSK and RZ-ASK WDM transmission over transoceanic distances,” in Proc. OFC
2003, Atlanta, GA, 2003, paper ThE2.
[8] G. Vareille, L. Becouarn, P. Pecci, P. Tran, and J. F. Marcerou, “8370 km with 22 dB spans ULH
transmission of 185 10.709 Gbit/s RZ-DPSK channels,” in Proc. OFC 2003, Atlanta, GA, 2003,
postdeadline paper PD20.
×
[9] J. X. Cai, D. G. Foursa, L. Liu, C. R. Davidson, Y. Cai, W. W. Patterson, A. J. Lucero, B. Bakhshi,
G. Mohs, P. C. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M.
Nissov, A. N. Pilipetskii, and N. S. Bergano, “A DWDM demonstration of 3.73 Tb/s over 11,000
km using 373 RZ-DPSK channels at 10 Gb/s,” in Proc. OFC 2003, Atlanta, GA, 2003,
postdeadline paper PD22.
[10] L. Becouarn, G. Vareille, P. Pecci, and J. F. Marcerou, “3 Tbit/s transmission (301 DPSK
channels at 10.709 Gb/s) over 10,270 km with a record efficiency of 0.65 bit/s/Hz,” in Proc.
ECOC 2003, Rimini, Italy, 2003, postdeadline paper Th4.3.2.
[11] B. Zhu, L. Leng, A. H. Gnauck, M. O. Pedersen, D. Peckham, L. E. Nelson, S. Stulz, S. Kado, L.
Gruner-Nielsen, R. L. Lingle Jr, S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G.
Baynham, P. Gaarde, Y. Emori, and S. Namiki, “Transmission of 3.2 Tb/s (80 42.7 Gb/s) over
5200 km of Ultrawave fiber with 100 km dispersion-managed spans using RZ-DPSK format,” in
Proc. ECOC 2002, Copenhagen, Denmark, 2002, postdeadline paper PD4.2.
×
[12] B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M. O.
Pedersen, J. Kim, R. Lingle Jr, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, “6.4 Tb/s
(160 × 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 100 km of fiber
using CSRZ-DPSK format,” in Proc. OFC 2003, Atlanta, GA, 2003, postdeadline paper PD19.
×
[13] T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, and
N. Edagawa, “70 GHz-spaced 40 × 42.7 Gbit/s transmission over 8700 km using CS-RZ DPSK
signal, all-Raman repeaters and summetrically dispersion-managed fiber span,” in Proc. OFC
2003, Atlanta, GA, 2003, postdeadline paper PD23.
[14] I. Morita and N. Edagawa, “50 GHz-spaced 64 × 42.7 Gbit/s transmission over 8200 km using
pre-filtered CS-RZ DPSK signal and EDFA repeaters,” in Proc. ECOC 2003, Rimini, Italy, 2003,
postdeadline paper Th4.3.1.
[15] G. Charlet, J. Lazaro, E. Corbel, P. Tran, A. Klekamp, T. Lopez, H. Mardoyan, W. Idler, A.
Konczykowska, J.-P. Thiery, R. Dischler, and S. Bigo, “One-hundred WDM-channel transatlantic
transmission experiment at 43 Gbit/s using Raman repeaters with large 65 km spacing,” in Proc.
ECOC 2003, Rimini, Italy, 2003, postdeadline paper Th4.3.3.
[16] G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mardoyan, A.
Konczykowska, F. Jorge, and S. Bigo, “WDM transmission at 6 Tbit/s capacity over transatlantic
distance, using 42.7 Gb/s differential phase-shift keying without pulse carver,” in Proc. OFC 2004,
Los Angeles, CA, 2004, postdeadline paper PDP36.
[17] K. P. Ho, “Error probability of DPSK signals with intrachannel four-wave-mixing in highly
dispersive transmission systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 789-791, 2005.
[18] K. P. Ho, “Impact of nonlinear phase noise to DPSK signals: A comparison of different models,”
IEEE Photon. Technol. Lett., vol. 16, pp. 1403-1405, 2004.
[19] K. P. Ho and H. C. Wang, “Comparison of nonlinear phase noise and intrachannel
four-wave-mixing for RZ-DPSK signals in dispersive transmission systems,” IEEE Photon.
Technol. Lett., vol. 17, pp. 1426–1428, 2005.
[20] H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK
systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett., vol. 15, pp. 320-322, 2003.
[21] K. P. Ho, “Performance of DPSK signals with nonlinear phase noise for systems with small
Number of fiber spans,” 2004 IEEE/LEOS Workshop on Advanced Modulation Formats, San
Francisco, CA, paper ThC4, pp. 19-20.
[22] J. Wang and J. M. Kahn “Impact of chromatic and polarization-mode dispersions on DPSK
systems using interferometric demodulation and direct detection,” J. Lightwave Technol., vol. 22,
pp. 362-271, 2004.
[23] K. P. Ho, Phase-Modulated Optical Communication Systems, New York: Springer-Verlag, 2005.
[24] J. G. Proakis, Digital Communication, New York: McGraw Hill, 4th edition , 2000.
[25] G. P. Agrawal, Nonlinear Fiber Optics, San Diego: Academic Press, 3th edition. 2003.
[26] J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communication systems using linear
amplifiers,” Opt. Lett., vol. 15, pp. 1351-1353, 1990.
[27] K. P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett., vol. 28, pp.
1350–1352, 2003.
[28] K. P. Ho, “Probability density of nonlinear phase noise,” Journal of the Optical Society of
America B: Optical Physics, vol. 20, no. 9, pp. 1875-1879, 2003.
[29] R. H. Stolen and A. Ashkin.” Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. vo. 22, pp.
294-295, 1973.
[30] S. K. Turitsyn, E. G. Turitayana, V. K. Mezentaev, and M. P. Fedoruk, “On the theory of
intra-channel four-wave mixing,” Lasers and Electro-Optics Europe, 2000, Conference Digest.
2000, paper CThE42.
[31] J. Wang and J. M. Kahn, ”Conventional DPSK versus symmetrical DPSK: comparison of
dispersion tolerances,” IEEE Photon. Technol. Lett., vol. 16, pp. 1585 – 1587, 2004.
[32] A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK
receiver with 45 photon/bit sensitivity,” IEEE Photon. Technol. Lett., vol. 15, pp. 99-101, 2003.
[33] E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct
detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett., vol. 6,
pp. 263-265, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林天祐(民87)。全面品質管理與學校行革新。教育資料與研究,22,19-22。
2. 林公孚(民85)。基本品質理念在高等教育上的應用。品質管制月刊,32(1),17-18。
3. 張鈿富(民94)。大學多元入學方案實施對入學機會之影響。挑戰與創新:變革世界中的高等教育—海峽兩岸高等教育研究學術研討會。大陸:中國人民大學。
4. 吳卓勳(民85)。教學品質之探討。桃縣文教(復刊號),2,38-39。
5. 吳清山、黃旭鈞(民84)。提升教育品質的一股新動力:談全面品質管理及其在教育上的應用,教育資料與研究,2,74-83。
6. 張家宜、李怡禛(民91)。全面品質管理應用於高等教育行政之實證研究。教育研究資訊,10(1),29-54。
7. 曾榮華(民88)。應用全面品質管理觀點提昇學校營繕工程品質。教育資料與研究,31,82-90。
8. 湯堯(民91)。論述高等教育經營策略分析:以內部品保系統與外部標竿系統之建立為例。教育研究資訊,10(5),1-27。
9. 葉若春、江行全(民85)。實施教學品保制度經驗談。品質管制月刊,24-31。
10. 蒲介民、戴郁芬、洪明宏、朱元祥(民88)。樹德技術學院教學品保系統之規劃與實施。樹德科技學報,1(1),103-110。
11. 鄭春生(民85)。由品質管理技術模式談教學理念與教育品質。品質管制月刊,32(1),32-35。
12. 饒見維(民83)。教學系統發展在小學師資培育上的應用(上)。教學科技與媒體,18,18-28。