(3.236.6.6) 您好!臺灣時間:2021/04/23 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:倪慶昇
研究生(外文):Ching-Sheng Ni
論文名稱:頻率選擇衰變通道上正交分頻多工系統之共通道干擾移除
論文名稱(外文):Co-Channel Interference Suppression for OFDM Systems over Frequency-Selective Fading Channels
指導教授:陳光禎陳光禎引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:92
中文關鍵詞:正交分頻多工系統共通道雜訊
外文關鍵詞:OFDMCo-Channel Interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Inspired by the multiuser detection theory, we exploit the signal structure of the sub-carriers and develop multiuser detectors to suppress co-channel interference (CCI) of
unknown statistics for orthogonal frequency division multiplexing (OFDM) systems by considering each sub-carrier as an individual user and CCI as other unknown users. The
linear minimum mean square error multiuser detectors (LMMSE MUD) of sub-carriers are proposed, which require no a prior information of CCI by using adaptive implementations. With known received waveforms of all sub-carriers, the proposed multistage interference canceller (MIC) based on multistage MUD improves the LMMSE MUD by eliminating the residual interference from other sub-carriers in the soft estimate of
the LMMSE MUD by making use of tentative decisions. With the information of fre-quency location of the partial-band CCI, the LMMSE MUD and the MIC are proposed
in frequency domain to significantly reduce the complexity with similar performance according to the complexity analysis. When the tentative decisions are highly reliable,
further improvements can be achieved by the enhanced multistage interference canceller (EMIC) which replaces the combining at the second stage of the MIC. With the our
developed algorithm, the combining of the EMIC can be correctly generated from those of the LMMSE MUDs of interfered sub-carriers, which shows the EMIC can be realized without a prior information of CCI.

In OFDM systems with mutually un-orthogonal sub-carriers, the complexity to generate the combining of the EMIC is huge even if the CCI is a very narrowband signal.
To reduce the complexity of the EMIC, the generalized multistage interference canceller
(GMIC), an intermediate mode of the MIC and the EMIC, is proposed whose combining only assumes couples of adjacent sub-carriers of the desire sub-carrier are precisely
removed. Due to the high sensitivity of the EMIC to the incorrect tentative decisions, the GMIC even outperforms the EMIC in OFDM systems with mutually un-orthogonal
sub-carriers. The GMIC along with the generalized parameter generation algorithm is proposed to jointly suppress CCI and ICI over time-varying channels.
Abstract i
Contents iii
1 Introduction 1
1.1 An Introduction to Orthogonal frequency division multiplexing (OFDM)
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Importance of Co-Channel Interference Suppression for OFDM . . . 4
1.3 Interference Suppression in Spread-Spectrum Systems . . . . . . . . . . . 5
1.3.1 Predictive Techniques . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Multiuser Detection (MUD) Techniques . . . . . . . . . . . . . . 7
1.3.3 Interference Suppression in OFDM Systems . . . . . . . . . . . . 8
1.4 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Co-Channel Interference Suppression based on Multiuser Detectors
over Stationary Multipath Channels 10
2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Co-Channel Interference Suppression in DS-CDMA Systems . . . 11
2.2 Signal Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Co-Channel Interference Suppression based on the Linear Minimum Mean-
Square Error (LMMSE) Multiuser Detector (MUD) . . . . . . . . . . . . 14
2.4 The Multistage Interference Canceller (MIC) . . . . . . . . . . . . . . . . 16
2.5 Adaptive Implementation of the LMMSE MUD and the MIC . . . . . . . 19
2.5.1 Data-Aided Recursive Least-Square RLS Adaptive Implementa-
tion of the LMMSE MUD and the MIC . . . . . . . . . . . . . . . 20
2.5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Frequency-Domain Multiuser Detectors to Suppress Partial-Band Co-
Channel Interference over Stationary Multipath Channels 30
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Signal Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 The Frequency-Domain LMMSE MUD . . . . . . . . . . . . . . . 33
3.2.2 The Frequency-Domain MIC . . . . . . . . . . . . . . . . . . . . . 35
3.3 Adaptive Implementation of the Frequency-Domain LMMSE MUD and
the MIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Data-Aided Recursive Least-Square Adaptive Implementation of
the LMMSE MUD and the MIC . . . . . . . . . . . . . . . . . . . 37
3.4 Complexity Analysis of Time-Domain Suppression and Frequency-Domain
Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 A Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 The Frequency-Domain Enhanced Multistage Interference Canceller to
Suppress Partial-Band Co-Channel Interference over Stationary Mul-
tipath Channels 45
4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Signal Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 The Frequency-Domain Enhanced Multistage Interference Canceller (EMIC) 49
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 The Frequency-Domain EMIC . . . . . . . . . . . . . . . . . . . . 50
4.4 The Implementation of the Frequency-Domain EMIC . . . . . . . . . . . 51
4.4.1 The Parameter Generation Algorithm of the Frequency-Domain
EMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 The Generalized Parameter Generation Algorithm for the EMIC . 54
4.4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Frequency-Domain Joint Suppression of Partial-Band Co-Channel In-
terference and Inter-Carrier Interference for Zero-Padding OFDM Sys-
tems over Stationary Multipath Channels 63
5.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Signal Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 The Complexity of the Frequency-Domain Enhanced Multistage Interfer-
ence Canceller (EMIC) for ZP-OFDM without OLA . . . . . . . . . . . . 68
5.4 The Frequency-Domain Generalized Multistage Interference Canceller (GMIC)
for ZP-OFDM without OLA . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Application 1: ZP-OFDM Operating at 2.4GHz ISM Band with GFSK
Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Application 2: Multi-Band (MB) OFDM for Ultra-Wide Band Communi-
cations in the Presence of Uncoordinated Simultaneously Operating MB-
OFDM Piconets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6 Future Work 80
6.1 Frequency-Domain Joint Suppression of Partial-Band Co-Channel Inter-
ference and Inter-Carrier Interference for OFDM Systems over Time-
Varying Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.1 Signal Model and Assumptions . . . . . . . . . . . . . . . . . . . 80
6.1.2 The Frequency-Domain Generalized Multistage Interference Can-
celler (GMIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.3 The Implementation of GMIC in Time-Varying Channels . . . . . 84
6.2 Frequency-Domain Joint Suppression of Partial-Band Co-Channel Inter-
ference and Inter-Carrier Interference for OFDMA Systems over Time-
Varying Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . . . 85
7 Conclusions 86
Bibliography 86
[1] R. W. Chang, "Synthesis of Band-Limited Orthogonal Signals for Multichannel
Data Transmission,''" Bell Syst. Tech. J., vol. 45, pp. 1,775-1,796, Dec. 1966.
[2] B. R. Saltzberg, "Performance of an E±cient Parallel Data Transmission System,"
IEEE Trans. Commun. Tech., vol. COM-15, pp. 805-811, Dec. 1967.
[3] I. Kalet and N. A. Zervos, "Optimized Decision Feedback Equalization versus Op-
timized Orthogonal Frequency Division Multiplexing for High-speed Data Trans-
mission Over the Local Cable Network," IEEE Int''l. Conf Commun. Rec., pp.
1.080-1,085, Sept. 1989.
[4] S. B. Weinstein and P. M. Ebert, "Data Transmission by Freqency- Division Multi-
plexing Using the Discrete Fourier Transform," IEEE Trans. Commun. Tech., vol.
COM-19, pp. 628-634, Oct. 1971.
[5] C. S. Ni and K. C. Chen, "Co-channel Interference Suppression for Coded OFDM
Systems over Frequency-Selective Slowly Fading Channels," IEEE Proc. of Vihicu-
lar Technology Conference, vol. 1 pp. 679-683 Sept. 2004.
[6] C. S. Ni and K. C. Chen, "Frequency-Domain Suppression of Partial-Band Co-
Channel Interference for OFDM Systems over Frequency-Selective Fading Chan-
nels," Paper Summited to IEEE Communications Letters.
[7] L. B. Milstein, "Interference rejection techniques in spread spectrum communica-
tions," Proc. IEEE, vol. 76, pp. 657V671, June 1988.
[8] V. Poor and X. Wang, "Code-aided interfernce suppression for DS/CDMA
communications-Part I: Interference suppression capability," IEEE Trans. Com-
mun., vol. 45, pp. 1101-1111, Sept. 1997.
[9] V. Poor and X. Wang, "Code-aided interfernce suppression for DS/CDMA
communications-Part II: Parallel blind adaptive implementations," IEEE Trans.
Commun., vol. 45, pp. 1112-1122, Sept. 1997.
[10] Y. Li, and N. R. Sollenberger, "Adaptive antenna arrays for OFDM systems with
co-channel interference," IEEE Trans. Commun, vol. 47, pp. 217-229, Feb. 1999.
[11] S. KAPOOR, D. J. Marchok, and Y. Huang, "Adaptive interference suppression
in multiuser wireless OFDM systems using antenna arrays," IEEE Trans. Signal
Processing, vol. 47, pp. 3381-3391, Dec. 1999.
[12] J. Cheng, Y. Kamiya, and T. Ohira, "Adaptive beamforming of ESPAR antenna
based on steepest gradient algorithm," IEICE Trans. Commun., vol. E84-B, pp.
1790-1800, July 2001.
[13] R. Nilsson, F. SjÄoberg, and J. P. LeBlanc, " A Rank-Reduced LMMSE Canceller
for Narrowband Interference Suppression in OFDM-Based Systems," IEEE Trans.
Commun., vol. 51, pp. 2126-2140, Dec. 2003.
[14] M. Speth, A. Senst, and H. Meyr, "Low Complexity Space-Frequency MLSE For
Multi-User COFDM," IEEE Proc. of Global Telecommunications Conference, vol.
1, pp. 2395-2399, Dec. 1999.
[15] P. Vandenameele, L. V. der Perre, M. Engles, B.Gyselinckx, and H. D. Man, "A
Combined OFDM/SDMA Approach," IEEE J. Select. Areas Commun., vol. 18, pp.
2312-2321, Nov. 2000.
[16] M. MÄunster and L. Hanzo, "Co-channel interference cancellation techniques for an-
tenna array assisted multiuser OFDM systems," Proc. of 3G Mobile Communication
Technologies Conference, pp. 256-260, Mar. 2000.
[17] S. Verdu, Multiuser Detection, Cambridge, U.K.: Cambridge Univ. Press, 1998.
[18] S. Verdu, Optimum multiuser signal detection, Ph.D. dissertation, Univ. Illinois,
1984.
[19] R. Lupas, S. Verdu, "Near-far resistance of multiuser detectors in asynchronous
channels," IEEE Trans. Communications, vol. 38 , pp 496-508, April, 1990.
[20] U. Madhow and M. L. Honig, "MMSE interference suppression for direct-sequence
spread spectrum CDMA," IEEE Trans. Commun., vol. 42, pp. 3178-3188, Dec.
1994.
[21] P. A. Sung K. C. Chen, "A Linear Minimum Mean-Square Error Multiuser Receiver
in Rayleigh-Fading Channels ," IEEE JSAC, vol. 14, pp. 1583-1594, Oct. 1996.
[22] R. Kohno, H. Imai, M. Hatori, and S. Pasupathy, "An adaptive canceler of cochan-
nel interference for spread-spectrum multiple-access communication networks in a
power line," IEEE Journal on Selected Areas in Communications, vol. 8. no. 4. pp.
691-699, May 1990.
[23] M. K. Varanasi and B. Aazhang, "Multistage detection in asynchronous code-
division multiple access communications," IEEE Trans. on Communications, vol.
38, no. 4, pp. 509-519, April 1990.
[24] P. Patel and J. Holtzman, "Analysis of a simple successive interference cancellation
scheme in a DS/CDMA system," IEEE Journal on Selected Areas in Communica-
tions, vol. 12, no. 5, pp. 796-807, June 1994.
[25] M. Honig, U. Madhow, and S. Verdu, "Blind multiuser detection," IEEE Trans.
Inform. Theory, vol. IT-41, pp. 944-960, July 1995.
[26] S. Buzzi, M. Lops, and A. M. Tulino, "Time-varying narrow-band interference rejec-
tion in asynchronous multiuser DS/CDMA systems over frequency selective fading
channels," IEEE Trans. Commun., vol. 47, pp. 1523-1536, Oct. 1999.
[27] J. G. Proakis, Digital Communications, 2nd ed., New York: McGraw-Hill, 1989.
[28] S. Haykin, Adaptive Filtering Theory, 3rd ed. Englewood Cli®s, NJ: Prentice-Hall,
1996.
[29] G. Caire, "Two-stage nondata-aided adaptive linear reveivers for DS/CDMA,"
IEEE Trans. Cummun., vol. 48, pp. 1712-1724, Oct. 2000.
[30] X. Zhang and W. Wei, "Blind adaptive multiuser detectin based on Kalman ‾lter-
ing," IEEE Trans. Signal Processing, vol. 50, pp-87-95, Jan. 2002.
[31] T. Hunziker, M. Hashiguchi, and T. Ohira, "Receiption of coded OFDM signals in
broad-band fading environments with strong cochannel interference," IEEE Proc.
of Global Telecommunications Conference, vol. 4, pp. 2310-2314, Dec. 2003.
[32] H. Yoshino and A. Czylwik, "Adaptive co-channel interference (CCI) cancellation
for OFDM communication systems," Proc. Int. Zurich Seminar on Broadband Com-
mun. 2000, pp. 245-250, Feb. 2000.
[33] S. Y. Park and C. G. Kang, "Iterative MAP receiver for interference suppression
in SDM/OFDM systems," IEEE Proc. of Vihicular Technology Conference, vol. 2,
pp. 1065-1069, Sept. 2002.
[34] D. Darsena, G. Gelli, L. Paura, and F. Verde, "Joint Equalisation and Interference
Suppression in OFDM Systems," IEE Electron. Lett., vol. 39, pp. 873-874, May
2003.
[35] B. O''Hara and A. Petrick, "The IEEE 802:11 handbook: A designer''s companion,"
Standard Information Network IEEE Press, 1999.
[36] Supplement to IEEE Standard for Information technology - Part 11:Wireless LAN
Medium Access Control (MAC) and Phisical Layer (PHY) speci‾cations: Further
Higher-Speed Physical Layer Extension in the 2.4 GHz Band.
[37] B. Muquet et al., "Cyclic Pre‾x or Zero Padding for Wireless Multicarrier Trans-
mission?," IEEE Trans. on Commun., vol. 50, no. 12, pp. 2136-2148, Dec. 2002.
[38] A. Batra et al., "Design of a Multiband OFDM System for Realistic UWB Channel
Environments," IEEE Trans. on Microwave Theory and Techniques, vol. 52, no. 9,
pp. 2123-2138, Sept. 2004.
[39] A. Batra et al., "Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task
Group 3a," IEEE P802.15-03/268r1- TG3a, Sept. 2003.
[40] A. Saleh, R. Valenzuela, "A Statistical Model for Indoor Multipath Propagation,"
IEEE JSAC, vol. 5 no. 2, pp. 128-137, Feb. 1987.
[41] J. R. Foerster, et al., "Channel Modeling Sub-committee Report Final," IEEE
P802.15-02/490r1-SG3a, Nov. 2002.
[42] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston,
MA: Artech House, 2000.
[43] Supplement to IEEE Standard for Information technology - Part 11:Wireless LAN
Medium Access Control (MAC) and Phisical Layer (PHY) speci‾cations: Further
Higher-Speed Physical Layer Extension in the 2.4 GHz Band.
[44] A. Duel-Hallen, "Decorrelating decision-feedback multiuser detector for syn-
chronous code-division multiple access channels," IEEE Trans. Communications,
vol. 41, no. 2, pp. 285-290, Feb. 1993.
[45] A. Duel-Hallen, "A family of multiuser decision-feedback detectors for asynchronous
code-division multiple access channels," IEEE Trans. Communications, vol. 43, no.
2/3/4, pp. 421-434, Feb./Mar./Apr. 1995.
[46] R. E. Ziemer and R. L. Peterson, Digital communications and spread spectrum
systems, New York: Macmillan, 1985.
[47] H. Vincent Poor, An introduction to signal detection and estimation, Spring-Verlag,
1994.
[48] H. Vincent Poor and S. Verdu, "Probability of error in MMSE multiuser detection,"
IEEE Trans. Information Theory, vol. IT-43, pp. 858-871, May. 1997.
[49] Wei-Chiang Wu and Kwang-Cheng Chen, "Joint determination of user population
and detection in synchronous multiuser CDMA system," IEEE Journal on Selected
Areas in Communications, vol. 16, no. 9, December 1998.
[50] R. E. Ziemer and R. L. Peterson, Digital communications and spread spectrum
systems, New York: Macmillan, 1985.
[51] C. M. Chang and K. C. Chen, "Frequency domain approach to multiuser detection
in DS-CDMA communications," IEEE Communications Letters, vol. 4, no. 11, pp.
331-333, Nov. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 潘淑滿、楊榮宗,〈引介六十年代歐、美草根社區組織運動一阿凌思基、女性主義、及解放神學〉,《社區發展季刊》,第77期,民86,頁162-167。
2. 劉弘煌,〈都市型社區的社會福利社區化一以台北市文山區的經驗為例〉,《社區發展季刊》,民88,第87期,頁58-71。
3. 楊瑩,〈社區工作模式在福利社區化過程中之運用一以鹿港實驗計劃為例〉,《社區發展季刊》,第87期,民88,頁35-51。
4. 黃碧霞,〈台灣省社區發展三十年之回顧-兼論跨世紀社區發展應有理念與工作方向〉,《社區發展季刊》,第87期,民88,頁4-9。
5. 黃源協,〈福利社區化的迷思與省思-以鹿港實驗計畫為例〉,《社區發展季刊》,第87期,民88,頁121-134。
6. 陳菊,〈高雄市社區工作新思維〉,《社區發展季刊》,民88,第87期,頁10-15。
7. 翁毓秀,〈家庭福利社區化初探〉,《社區發展季刊》,民88年,第87期,頁135-151。
8. 唐啟明,〈台灣省家庭福利服務之推展〉,《社區發展季刊》,民87,第84期,頁6-11。
9. 蘇景輝,〈社區照顧實務探討〉,《社區發展季刊》。第87期,民88,頁225-236。
10. 蕭玉煌,〈擴大參與社區發展提高生活品質-我國台灣地區社區發展的回顧與展望〉,《社區發展季刊》,第26期,民73,頁42-56。
11. 蔡啟源,〈地域福祉:「福利社區化」之日本風貌〉,《社區發展季刊》,第85期,民88,頁214-223。
 
系統版面圖檔 系統版面圖檔