跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫健文
研究生(外文):Kin-Man Sun
論文名稱:正交分頻多工系統之強健性頻率偏移估測
論文名稱(外文):Robust Frequency Offset Estimation of OFDM Systems
指導教授:陳光禎陳光禎引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:100
中文關鍵詞:頻率偏移估測正交分頻多工窄頻干擾時頻交錯超寬頻
外文關鍵詞:frequency offset estimationorthogonal frequency division multiplexing (OFDM)narrowband interference (NBI)time-frequency interleaving (TFI)ultra-wideband (UWB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
儘管正交分頻多工對干擾敏感,但仍被廣泛的應用在無線寬頻通訊系統中。在窄頻干擾下,首先研究其在同步碼符號輔助之下的時間與頻率偏移估測的效果。同時,時頻交錯正交分頻多工被普遍擬用在(相對地)受到窄頻干擾的環境下所操作的超寬頻通訊系統。這篇論文,主要是在利用時頻交錯的協助,發展出在干擾環境下有效的頻率偏估測方法。正交分頻多工系統經由不同的次頻帶的同步碼符號,在時域,使用適應性雜訊消除法技術來估測消除干擾後的關聯樣本;在頻域,透過頻域轉換去取得關聯次載波,使得所估測的頻率偏移更為強健。同時亦顯示出頻域方法在強干擾下較時域方法來的強健,其原因為當所有的次頻帶的同步碼都被窄頻干擾的情況下,在高信號雜訊比的地方會有明顯有效抑制其錯誤地板效應的能力。
OFDM, in spite of being sensitive to interference, is widely applied in wireless broadband communications. The effect of preamble symbol aided timing and frequency offset estimation in the presence of narrowband interference is investigated. Time-frequency interleaving OFDM has been generally considered for ultra-wide band communications, which must operate under (relatively) narrow-band interferences. By mitigation with the aid of time-frequency interleaving, we develop effective frequency offset estimation under interference in this thesis. Applying adaptive noise cancellation and frequency domain transformation technique, both time-domain and frequency-domain algorithms to estimate frequency offset via correlating samples and correlating subcarriers respectively of repeated preamble symbols from different sub-bands are shown robust to interference in OFDM systems. It can be shown that frequency-domain approach is much robust than time-domain approach when preamble symbol are affected by severe NBI over all sub-bands since the error floor effect is suppressed much efficiently at high SNR region.
Abstract i
Contents iii
List of Figures vii
List of Tables xi
1 Introduction 1
2 Technical Background 5
2.1 Orthogonal Frequency Division Multiplexing Systems ﹒﹒﹒﹒﹒﹒﹒﹒ 5
2.1.1 Fundamental of Orthogonal Frequency Division Multiplexing ﹒﹒﹒﹒ 6
2.1.2 Transmission over Frequency-Selective Fading Channels ﹒﹒﹒﹒﹒﹒ 6
2.2 Degradation due to Timing and Frequency Offset ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 7
2.2.1 Transmission Model ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 7
2.2.2 Effects of Timing (or Frame) Offset ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 8
2.2.3 Effects of Carrier and Sampling Clock Frequency Offsets ﹒﹒﹒﹒﹒11
2.2.4 Sensitivity of OFDM symbol to carrier frequency offset ﹒﹒﹒﹒﹒﹒13
2.3 Degradation due to Narrowband Interference ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒14
2.3.1 Narrowband Interference Model ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒14
2.3.2 Synchronization in the Presence of Narrowband Interference ﹒﹒﹒15
2.3.3 Effect of Narrowband Interference on Pilot Symbol Detection ﹒﹒﹒17
2.3.4 Effect of Narrowband Interference on Frequency Offset Estimation ﹒18
3 Robust Timing and Frequency Offset in the Presence of Narrowband Interference 21
3.1 Autoregressive Modeling and Linear Prediction Filtering of Narrowband Interference ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒21
3.1.1 Introduction to Narrowband Interference suppression ﹒﹒﹒﹒﹒﹒﹒﹒21
3.1.2 Autoregressive Modeling ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒23
3.1.3 Linear Prediction Filtering ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24
3.2 Time Domain Approach of Frequency Offset Estimation ﹒﹒﹒﹒﹒﹒﹒26
3.2.1 Normalized Least Mean Square Algorithm ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒26
3.2.2 Performance analysis of frequency offset estimation ﹒﹒﹒﹒﹒﹒﹒27
3.3 Narrowband Interference Identification in Frequency Domain ﹒﹒﹒﹒31
3.3.1 Order-statistic Algorithm of NBI Identification ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒31
3.3.2 Performance Analysis of Narrowband Interference Identification ﹒34
3.4 Frequency Domain Approach of Frequency Offset Estimation ﹒﹒﹒﹒36
3.4.1 Windowing of Frequency domain transformation ﹒﹒﹒﹒﹒﹒﹒﹒﹒36
3.4.2 Laplacian Approximation of Non-Gaussian Noise Modeling ﹒﹒﹒38
3.4.3 Median Selection of Frequency Offset Estimation ﹒﹒﹒﹒﹒﹒﹒﹒39
3.4.4 Computation Complexity of N-LMS and Median Selection ﹒﹒﹒﹒43
4 Robust Frequency Offset Estimation on Ultra-Wide Band Environment 45
4.1 Introduction to Ultra-Wide Band Environment ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒45
4.2 Time-Frequency Interleaved OFDM Systems ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒49
4.2.1 Architecture for a TFI-OFDM System ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒49
4.2.2 Frequency Planning and Synthesize Architecture ﹒﹒﹒﹒﹒﹒﹒﹒﹒52
4.2.3 TFI-OFDM and NBI Signal Model ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54
4.3 BLUE of Frequency Offset Estimation in TFI-OFDM Systems ﹒﹒﹒﹒56
4.3.1 N-LMS Over TFI-OFDM Systems ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒56
4.3.2 Frequency Offset Estimation Performance Analysis using BLUE ﹒58
4.4 Frequency Domain Median Selection of Frequency Offset Estimation ﹒62
4.4.1 Windowing and Overlap-Add Effect of Frequency Domain
Transformation ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒62
4.4.2 Simple Median Selection Tracking Algorithm ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒65
4.4.3 Other Non-Gaussian Noise Modeling ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒66
5 Computer Simulations 71
5.1 Effect of N-LMS on Synchronization ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒71
5.2 Time Domain Approach ﹒﹒﹒﹒﹒﹒﹒﹒74
5.3 Frequency Domain Approach ﹒﹒﹒﹒﹒79
5.4 Performance Comparison over Different SIR Level ﹒﹒﹒﹒﹒﹒﹒﹒﹒84
5.5 Simple Median Selection Tracking ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒88
6 Conclusion 91
Bibliography 95
[1] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 37, pp. 5-14, May 1990.
[2] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 2123-2138, Sept. 2004.
[3] K. Witrisal, “Impact of DC-offsets and carrier feed-through on correlation-based frequency synchronization for OFDM,” in Proc. InOWo 2001: 6th Int. OFDM Workshop 2001, pp. 15-1-15-5, Sep. 2001.
[4] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613-1621, Dec. 1997.
[5] T. Pollet and M. Peeters, “Synchronization with DMT modulation,” IEEE Commun., Mag. pp. 80-86, April 1999.
[6] L. E. Franks, “Carrier and Bit synchronization in Data Communication-A Tutorial,” IEEE Trans. Commun., vol.28, pp. 1107-20, Aug. 1980.
[7] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design for wireless broad-band systems using OFDM-Part I,” IEEE Trans. Commun., vol. 47, pp. 1668-1677, Nov. 1999.
[8] P. H. Moose, “A technique for orthogonal frequency-division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, pp. 2908-2914, Oct. 1994.
[9] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Processing, vol. 145, pp. 1800-1805, July 1997.
[10] M. Morelli, “Timing and frequency synchronization for the uplink of an OFDMA system,” IEEE Trans. Commun., vol. 52, pp. 296-306, Feb. 2004.
[11] M. Morelli and U. Mengali, “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Lett., vol. 3, pp. 75-77, March 1999.
[12] H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, pp. 822-839, July 2003.
[13] A. J. Coulson, “Narrowband interference in pilot symbol assisted OFDM systems," IEEE Trans. Wireless Commun., vol.3, pp. 2277-2287, Nov. 2004.
[14] S. M. Kay, Fundamentals of statistical signal processing Vol. II: Detection theory, Prentice Hall, 1993.
[15] J. G. Proakis, Digital Communications, Fourth Edition, McGraw Hill, 2001.
[16] T. Pollet, M. Van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol.43, pp. 191-193, April 1995.
[17] F. Classen and H. Meyr, “Frequency synchronization algorithms for OFDM systems suitable for communications over frequency selective fading channels,” in Proc. IEEE Int. Conf. Vehicular Technology, Stockholm, Sweden, pp. 1807-1811, June 1994.
[18] A. Batra et al., “Multi-band OFDM physical layer proposal,” IEEE P802.15-03/268r0-TG3a.
[19] A. J. Coulson, “Maximum Likelihood synchronization for OFDM using a pilot symbol: Algorithms,” IEEE J. Select. Areas Commun., vol. 19, pp. 2486-2494, Dec. 2001.
[20] -, “Maximum Likelihood synchronization for OFDM using a pilot symbol: Analysis,” IEEE J. Select. Areas Commun., vol. 19, pp. 2495-2503, Dec. 2001.
[21] S. M. Kay, Fundamentals of statistical signal processing Vol. I: Estimation theory, Prentice Hall, 1993.
[22] S. Haykin, Adaptive filter theory, Prentice Hall International Editions, third edition, 1996.
[23] F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” in Proc. IEEE, vol. 66, pp. 51-83, Jan. 1978.
[24] Kenney, J. F. and Keeping, E. S. “The Median,” “Relation Between Mean, Median, and Mode,” “Relative Merits of Mean, Median, and Mode,” and “The Median.” §3.2, 4.8-4.9, and 13.13 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 32-35, 52-54, 211-212, 1962.
[25] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE JSAC, vol. sac-5, no. 2, pp. 128-137, Feb. 1987.
[26] J. Foerster, et al., “Channel modeling sub-committee report final,” IEEE802.15-02/490.
[27] M. Pendergrass, “Empirically based statistical ultra-wideband channel model,” IEEE P802.15-02/240-SG3a.
[28] J. Foerster and Q. Li, “UWB channel modeling contribution from Intel,” IEEE P802.15-02/279-SG3a.
[29] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prefix for zero padding for wireless multicarrier transmission?,” IEEE Trans. Commun., vol. 50, pp. 2136-2148, Dec. 2002.
[30] “First report and order, revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FCC, ET Docket 98-153, Feb. 14, 2002.
[31] H. Hashemi, “Impulse response modeling of indoor radio propagation channels,” IEEE J. Select. Areas Commun., vol.11, pp. 967-978, Sept. 1993.
[32] D. Cassioli, M. Z. Win, and A. F. Molisch, “The ultra-wide bandwidth indoor channel-from statistical model to simulations,” IEEE J. Select. Areas Commun., vol. 20, pp. 1247-1257, Aug. 2002.
[33] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Process. Mag., vol. 9, no.1, pp. 14-37, 1992.
[34] A. V. Oppenheim and J. S. Lim, Discrete-time signal processing, Prentice-Hall, Englewood Cliffs, N.J.
[35] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers, New York: Plenum, 1997.
[36] H. V. Poor, An introduction to signal detection and estimation, Springer-Verlag, 1994.
[37] G. Casella and R. L. Berger, Statistical Inference, second edition, Duxbury Advanced Series, 2002.
[38] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Norwood, MA: Artech House, 2000.
[39] J. Heiskala and J. Terry, OFDM wireless LANs: A theoretical and practical guide, Sams Publishing, 2002.
[40] T. Pollet, P. Spruyt, and M. Moeneclaey, “The BER performance of OFDM systems using non-synchronizaed sampling,” Proc. Globecom’94, San Francisco, CA, pp. 253-257, Dec. 27-29, 1994.
[41] F. Daffara and O. Adami, “A new frequency detectors for orthogonal multicarrier transmission techniques,” in Proc. IEEE Int. Conf. Commun., Chicago, IL, pp. 804-809, July 1995.
[42] M. Speth, F. Classen, and H. Myer, “Frame synchronization of OFDM systems in frequency selective fading channels,” in Proc. IEEE Int. Conf. Vehicular Technology, Phoenix, AZ, pp. 1807-1811, May 1997.
[43] M. Morelli and U. Mengali, “Carrier-frequency estimation for transmissions over selective channels,” IEEE Trans. Commun., vol. 48, pp. 1580-1589, Sept. 2000.
[44] Meng-Han Hsieh and Che-Ho Wei, “A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels,” IEEE Trans. Wireless Commun., vol. 48, pp. 1596-1609, Sept. 1999.
[45] H. Nogami and T. Hagashima, “A frequency and timing period acquisition technique for OFDM systems,’ IEICE Trans. Commun., vol. E79-B, pp. 1135-1146, 1996.
[46] N. Lashkarian and S. Kiaei, “Class of cyclic-based estimatiors for frequency-offset estimation of OFDM systems,” IEEE Trans. Commun., vol. 48, pp. 2139-2149, Dec. 2000.
[47] D. Rife and R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inform. Theroy, vol. IT-20, pp. 591-598, Sept. 1974.
[48] D. Gerakoulis and P. Salmi, “An interference suppressing OFDM system for wireless communications,” in Proc. ICC2002: IEEE Int. Conf. Commun., vol. 1, pp. 480-484, April 2002.
[49] S. Kapoor and S. Nedic, “Interference suppression in DMT receivers using windowing,” in Proc. ICC2000: IEEE Int. Conf. Commun., vol. 2, pp. 778-782, June 2000.
[50] D. Zhang, P. Fan, and Z. Cao, “Interference cancellation for OFDM systems in presence of overlapped narrow band transmission system,” IEEE Trans. Consumer Electronics, vol. 50, pp. 108-114, Feb. 2004.
[51] D. Zhang, P. Fan, and Z. Cao, “A novel narrowband interference canceller for OFDM systems,” IEEE WCNC2004, vol. 3, pp. 1426-1430, March 2004.
[52] R. Nilsson, F. Sj¨oberg, and J. P. LeBlanc, “A Rank-Reduced LMMSE Canceller for Narrowband Interference Suppression in OFDM-Based Systems,” IEEE Trans. Commun., vol. 51, pp. 2126-2140, Dec. 2003.
[53] D. Darsena, G. Gelli, L. Paura, and F. Verde, “Joint Equalisation and Interference Suppression in OFDM Systems,” IEE Electron. Lett., vol.39, pp. 873-874, May 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top