跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐雍智
研究生(外文):Yung-Chih Shi
論文名稱:人臉辨識於IC健保卡上的應用
論文名稱(外文):The application of face recognition in National Health Insurance IC Card
指導教授:張璞曾張璞曾引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:66
中文關鍵詞:嘴唇皮膚偵測邊緣偵測PCA演算法IC card
外文關鍵詞:mouth and skin detectedge detectPCA algorismIC card
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
健保IC卡已全面實施,對於人民的醫療需求帶來莫大的幫助。然而這一張關係到每個人隱私與重要醫療資訊的卡片儼然成為盜用的目標,因此,本研究提出一防盜的機制,結合人臉辨識與IC健保卡系統,當民眾到醫院去掛號,利用讀卡機讀取IC健保卡時,讀卡機上裝設的CCD即時將民眾的人臉影像拍下,經由偵測的方式將人臉特徵抓取出來,同時系統讀取卡片上的資料,根據卡片上存放人臉的特徵資料與即時拍攝的影像的特徵資料作比對,比對出確定無誤即能證明此張IC健保卡為本人所有而非別人所盜用。由於每個人都有一張自己獨特的臉孔,是別人無法效仿的,利用此一特性有效杜絕被盜用及仿冒的風險。
IC cards for health insurance has been taken effect throughout Taiwan. This is medically beneficial to the people. However, this card is closely related to everyone’s privacy and to their personal important medical data, has been the target of piracy. Therefore, the purpose of this research is to offer a mechanism to prevent the occurrence of piracy by combining human face recognition method into the system for IC health insurance cards. When people register at hospital, their IC card is readed by card reader. At the same time ,the CCD equipped on the card reader will take pictures of their faces. From the features of the human face stored on the IC card, we can compare these with the instantaneous picture to make sure that the user of this IC card is the correct person .As everyone has his unique face features ,it is very difficult to imitate.We can use this characteristic to eliminate the risk of being counterfeited.
第一章 序論…………………………………………………………………………1
1-1概論……………………………………………………………………………1
1-2 研究動機………………………………………………………………………3
1-3 智慧晶片IC卡………………………………………………………………3
1-4 系統目標………………………………………………………………………4
第二章 原理與方法…………………………………………………………………6
2-1 人臉偵測………………………………………………………………………6
2-2 人臉辨識………………………………………………………………………7
2.2.1 Geometric Feature-Based Methods…………………………………7
2.2.2 Template-Based Methods………………………………………………7
2.2.2.1 Karhunen-Loeve Expansion-Based Methods…………………8
2.2.2.2 Linear Discriminant-Based Methods…………………………8
2-3 IC卡的規格與架構……………………………………………………………9
2.3.1 Integrated Circuit Card (ICC)……………………………………10
2.3.2 Interface Device (IFD)……………………………………………11
2.3.3 Interface Device Handler (IFD Handler)………………………11
2.3.4 ICC Resource Manager………………………………………………12
2.3.5 Service Provider……………………………………………………12
2.3.5.1 ICC Service Provider…………………………………………12
2.3.5.2 Cryptographic Service Provider……………………………13
2.3.6 ICC-Aware Application………………………………………………13
第三章 系統架構…………………………………………………………………15
3-1 系統架構簡介………………………………………………………………15
3-2 人臉偵測……………………………………………………………………16
3.2.1 YUV色彩模型…………………………………………………………17
3.2.2 皮膚及嘴唇的色彩空間………………………………………………18
3.2.2.1 皮膚的色彩空間………………………………………………18
3.2.2.2 嘴唇的色彩空間………………………………………………18
3.2.3 人臉偵測架構…………………………………………………………20
3.2.3.1 偵測皮膚區域…………………………………………………20
3.2.3.2 偵測嘴唇區域…………………………………………………24
3-3 人眼與眉毛偵測……………………………………………………………27
3.3.1 Gradient Operator…………………………………………………27
3.3.2 Laplacian Operator…………………………………………………28
3.3.3 Averaging filter……………………………………………………29
3.3.4 人眼與眉毛偵測………………………………………………………30
3-4 人臉辨識……………………………………………………………………35
3.4.1 特徵臉演算法…………………………………………………………35
3.4.2 人臉辨識系統架構……………………………………………………35
3.4.3 特徵眼演算法…………………………………………………………40
3.4.4 亮度的補償……………………………………………………………41
第四章 實驗結果…………………………………………………………………44
4-1 攝影機………………………………………………………………………44
4-2 人臉與人眼眉毛偵測………………………………………………………47
4.2.1人臉偵測………………………………………………………………47
4.2.2 人眼與眉毛偵測………………………………………………………48
4-3 人臉辨識……………………………………………………………………51
4.3.1 實驗一…………………………………………………………………51
4.3.2 實驗二…………………………………………………………………52
4.3.3 實驗三…………………………………………………………………53
4.3.4 實驗四…………………………………………………………………53
4.3.5 實驗五…………………………………………………………………55
4-4 IC卡讀寫……………………………………………………………………56
第五章 討論與結論………………………………………………………………59
5-1 討論…………………………………………………………………………59
5-2 結論…………………………………………………………………………61
第六章 未來工作…………………………………………………………………62
參考文獻……………………………………………………………………………63
[1] 行政院衛生署網站:http://www.doh.gov.tw/
[2] 中央健保局網站:http://www.nhi.gov.tw/
[3]Yu-Fei Ma, Lie Lu, Hong-Jiang Zhang, Mingjing Li, “An Attention Model for Video Summarization”,ACM Multimedia 2002.
[4]Tzu-Wei Fang, Ja-Ling Wu, “An Effective Summarization and Browsing Tool for News Videos”Department of Computer Science and Information Engineering National Taiwan University.
[5]Chen-Pin Kuo,Ja-Ling Wu, “News Video Segmentation Based on Visual and Audio Analysis”Department of Computer Science and Information Engineering National Taiwan University.
[6] G. Yang and T.S. Hung, “Human Face Detection in Complex Background,”Pattern Recognition, vol.27, no.1, pp.53-63, 1994
[7] T.Sakai, M.Nagao, and S. Fujibayashi, “Line Extraction and Pattern Detection in a Photograph,”Pattern Recognition, vol.1, pp.233-248, 1969.
[8]Turk, M.A. and Pentland, A.P.”Eigenfaces for recognition,”Journal of Cognitive Neuroscience, vol.3, pp.71-86, March 1991.
[9] Hongxun Yao and Wen Gao, “Face detection and location based on skin chrominance and lip chrominance transformation from color images,” Pattern Recognition, Vol.34, No.8, pp.1555-1564, Aug. 2001.
[10]K.C. Yow and R. Cipolla, “Fearture-based Human Face Detection,” Image and Vision Computing, vol. 15,no. 9, pp. 713-735, 1997.
[11] L. D. Harmon, M. K. Khan, R. Lasch, and R. F. Raming, “Machine identification of human haces,”Pattern Recognition, pp.97-110, 1981.
[12] A. J. Goldstein, L. Harmon, and A. Lesk, “Identification of human faces.”in Proceedings of IEEE, pp.748-760, 1971.
[13] Turk, M.A. and Pentland, A.P.”Face recognition using eigenfaces” Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,IEEE Computer Society Conference on, 3-6 June 1991.pp.586-591.
[14] A. Penland, B. Moghaddam, and T. Starner. “View-based and modular eigenfaces for face recognition,”in Proceedings of Conference on Computer Vision and Pattern Recognition, pp.84-91,1994.
[15] K. Etemad and R. Chellapa, “Face recognition using discriminant eigenvectors”in Proceedings of International Conference on Acoustics, Speech and Signal Processin, pp.2148-2151, 1996.
[16] S. Akamatsu, T. Sasaki, H. Fukumachi, and Y. Suenuga, “A Robust face identification scheme: KL expansion of an invariant feature space,”in SPIE Proceedings::Intelligent Robots and Computer Vision X:Algorithms and Techniques, vol. 1607, pp.71-81,1991.
[17] F. Samaria,“Face segmentation for identification using hidden markov models,”in British Machine Vision Conference, 1993.
[18]G. J. Edwards, C. J. Taylor, and T. Cootes, “Face recognition using the active appearance model,”in European Conference on Computer Vision, 1998.
[19]PC/SC網站:http://www.pcscworkgroup.com/
[20]ISO網站: http://www.sio.org/iso/en/ISOOnline.frontpage
[21]楊武智博士, “影像處理與辨識”全華股份有限公司
[22]Maxim A. Grudin, “On internal representations in face recognition systems,” Pattern Recognition, Vol.33, No.7, pp.1161-1177, July 2000.
[23]王國榮, “Visual Basic 6.0 與 Windows API講座”旗標出版股份有限公司
[24]楊倉杰, “Visual Basic 範例集”文魁資訊股份有限公司
[25]Zhujie and Yu, Y.L.,”Face recognition with eigenfaces,” Industrial Technology, 1994. Proceedings of the IEEE International Conference on, 5-9 Dec. 1994.pp.434-438.
[26]Lakshmanan, S and Watta, P and Yu Lin Hou and Gandhi, N,”Comparison betewwn eigenfaces and Fisherfaces for estimating driver pose” Intelligent Transportation Systems, 2001.Proceedings. 2001 IEEE, 25-29 Aug.2001.pp.889-894.
[27]Belhumeur, P.N. and Hespanha, J.P. and Kriegman, D.J.”Eigenfaces vs. Fisherfaces:recognition using class specific linear porjection” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume:19, Issue: 7, July 1997.pp.711-720.
[28]Kuhn, R., Nguyen, P., Junqua, J-C, Boman, R. & Gold-wasser, L.,”Eigenfaces and Eigenvoices:Dimensionality Reduction for Spicialized Pattern Recongnition”, IEEE Work-shop on Multimedia Signal Processing, December 1998.
[29]L. Sirovitch and M. Kirby, “Low-dimensional procedure for the characterization of human faces,”Journal of Optical Society of America, vol. 4, pp.519-524, March 1987.
[30]A. V. Nefian and M. H. Hayes, “Face recognition using an embedded HMM,”in Proceedings of the IEEE Conference on Audio and Video-based Biometric Person Authentication, pp.19-24, March 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top