跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宣翰
研究生(外文):Hsuan-Han Huang
論文名稱:以撓褶式機構設計並實現之新型三自由度電磁致動奈米定位平臺
論文名稱(外文):Design and Implementation of a New 3-DOF Electromagnetic-Nanopositioner Utilizing Flexure Mechanism
指導教授:傅立成傅立成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:105
中文關鍵詞:平行式撓摺式機構可適性滑動模式控制器精密定位奈米級定位平臺
外文關鍵詞:Parallel flexure mechanismAdaptive sliding-mode controllerPrecision positioningNanopositioner
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究之目的是設計並實現一新型、長行程、三自由度運動的奈米級定位平臺,此平臺能夠整合並應用於原子力顯微鏡來達成長行程與精密定位之需求。在本論文中,對於硬體架構、電磁致動器設計以及高效能的控制器設計都有完整的介紹。相較於一般市面上採用壓電方式致動之定位平臺,雖然具有奈米等級的定位精度,然而其運動的範圍僅侷限於微米等級,故本論文所設計之定位平臺期望擁有較大行程運動的能力(此指公釐等級),並搭配本研究室自行設計成功的『高精度光纖干涉儀』來提升平臺定位精度到奈米之等級。
本論文所設計的平臺在X與Y二維度上之最大行程可達±0.5mm,且最高解析度為165nm,平臺整體尺寸為100×100×30 mm3。平臺主體係採用一體成型的XY二維撓性結構作為無乾摩擦力的導引機構;致動器系統採用四組類音圈馬達原理所設計之電磁致動器,利用兩兩相互正交的排列方式來驅動平臺以達成三個自由度的運動;量測系統則是採用三組高精度光纖干涉儀作為平臺位置訊號之回授。再者,在本論文中,為了確保定位及追蹤時平臺之三自由度皆能保持穩定並符合系統性能之要求,我們提出一可適性滑動模式控制器,在系統參數變化以及外在干擾之不確定因素下,能順利達成系統之控制目標。經由一連串令人滿意的模擬與實驗結果中,可以證實本論文所設計之定位平臺可以達成長行程、高精度以及低成本之目標。
A novel, compact and three degree-of-freedom (DOF) nanopositioner with large travel ranges is presented, which can be integrated with atomic force microscope (AFM) for precise positioning. The design of the nanopositioner utilizes the monolithic parallel flexure mechanism with the built-in electromagnetic actuators and the fiber interferometers to achieve the 3-DOF motion. The whole control architecture takes the three configuration parameters measured by the three fiber interferometers and endeavors to control the 3-DOF motion through regulating the current in the electromagnetic actuators. To let the compact system be more robust and stabler in positioning, we propose an adaptive sliding-mode controller. The so developed robust control architecture consists of three components: 1) sliding mode controller, 2) adaptive law, and 3) force allocation. From the provided experimental results, satisfactory performances of the hereby developed system, including stiffness and precision, have been successfully demonstrated.
摘要 I
ABSTRACT II
TABLE OF CONTENTS III
CHAPTER 1 1
INTRODUCTION 1
1.1 MOTIVATION AND GOAL. 1
1.2 SURVEY ON THE NANOPOSITIONING SYSTEM 2
1.2.1 MECHANISMS FOR PRECISION POSITIONING DEVICE 6
1.2.2 COMPARISONS AMONG ACTUATING SYSTEMS 6
1.2.3 SENSING SYSTEM 10
1.3 TARGET APPLICATION. 10
1.4 CONTRIBUTIONS 12
1.5 THESIS ORGANIZATION 12
CHAPTER 2 15
PRELIMINARIES 15
2.1 BASIC THEORIES OF ELECTROMAGNETICS 15
2.1.1 LORENTZ FORCE PRINCIPLE 15
2.1.2 THE VECTOR POTENTIAL AND VECTOR POISSON EQUATION 16
2.1.3 THE SCALAR MAGNETIC POTENTIAL 20
2.2. PROPERTIES OF PERMANENT MAGNETS 20
2.3 BASIC THEOREMS OF ENERGY METHOD 25
2.3.1 EXTERNAL WORK AND STRAIN ENERGY 25
2.3.2 STRAIN ENERGY FOR BENDING MOMENT 26
2.3.3 CASTIGIANO’S THEOREM 27
2.4. REVIEWS OF THE FIBER FABRY-PEROT INTERFEROMETER 28
2.4.1 WORKING PRINCIPLE OF FFPI 28
2.4.2 MODULATION AND DEMODULATION 30
CHAPTER 3 33
DESIGN CONCEPTS 33
3.1. DESIGN PHILOSOPHIES 33
3.1.1 HIGH POSITIONING ACCURACY 34
3.1.2 LONG PLANAR STROKE 35
3.1.3 FAST POSITIONING 35
3.1.4 COMPACT SYSTEM 36
3.1.5 LOWEST COST 36
3.2 XY –DIM FLEXURE MECHANISM 37
3.2.1 FLEXURES 37
3.2.2 FLEXURE TYPES 38
3.2.3 XY FLEXURE MECHANISMS 44
3.3 ELECTROMAGNETIC ACTUATOR 46
3.3.1 VOICE COIL MOTOR. 46
3.3.2 OUR ELECTROMAGNETIC ACTUATOR 47
3.4 MEASUREMENT SYSTEM 49
3.5 A NOVEL INTEGRATED POSITIONER 50
CHAPTER 4 53
MODELING AND SYSTEM IDENTIFICATION 53
4.1 FORCE CHARACTERISTICS AND ALLOCATION 54
4.1.1 FORCE CHARACTERISTICS OF THE ELECTROMAGNETIC ACTUATOR 54
4.1.2 FORCE ALLOCATION 55
4.2 SENSING METHODOLOGY 58
4.3 DYNAMICS FORMULATION 60
4.4 SYSTEM IDENTIFICATION 63
CHAPTER 5 69
CONTROLLER DESIGN 69
5.1. ADAPTIVE SLIDING-MODE CONTROLLER DESIGN 70
5.1.1 SLIDING SURFACE 73
5.1.2 CONTROLLER FORMULATION 74
5.1.3 STABILITY ANALYSIS 76
5.2. NUMERICAL SIMULATION RESULTS 78
CHAPTER 6 83
EXPERIMENTAL RESULTS 83
6.1. HARDWARE SET-UP AND EXPERIMENTAL ENVIRONMENT 83
6.2. EXPERIMENTAL RESULTS AND DISCUSSIONS 86
6.2.1 LARGE MOVING RANGE 87
6.2.2 STEP-TRAIN RESPONSE 88
6.2.3 SINUSOIDAL MOTION 89
6.2.4 CIRCLING MOTION 92
6.2.5 FINE MOTION BASED ON FIBER INTERFEROMETER 93
CHAPTER 7 97
CONCLUSIONS 97
REFERENCES 99
[1]A. Daniele; S. Salapaka; M.V. Salapaka; M. Dahleh; “Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control,” in Proc. of American Control Conference, Vol.1, pp.253 – 257, 1999.
[2]T. Galante et al., “Design, modeling, and performance of a high force piezoelectric inchworm motor,” in Proc. Smart Structures and Integrated Systems, Vol. 3329, pp.756–767, 1998.
[3]N. Shimizu, T. Kimura, T. Nakamura, and I. Umebu, “An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism,” J. Vac. Sci. Tech. A, Vol.8, no. 1, pp.333–335, 1990.
[4] P. E. Tenzer and R. B. Mrad, “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners,” in IEEE/ASME Trans. on Mechatronics, Vol.9, no.2, 2004.
[5] J. Y. Shim, and D. G. Gweon, “Piezo-driven metrological multiaxis nanopositioner,” Review of Scientific Intruments, American Institute of Physics, 2001.
[6] S.T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon & Breach, Amsterdam, 2000
[7] S. H. Chang, C. E. Tseng, and H. C. Chien, “An ultra-precision XYθZ piezo micropositioner Part I: Design and analysis,” in IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol.46, no.4, pp.897-905, Jul. 1999.
[8] S. Salapaka, “Control of the Nanopositioning Devices,” in Proc. of Conference on Decision and Control, 2003.
[9] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges,” in IEEE Trans. on Robotics and Automation, Vol.19, no.4, 2003
[10]S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” PhD thesis, Massachusetts Institute of Technology, 2004
[11]K. S. J Pister, R. S. Fearing, and R.T Howe, “A planar air levitated electrostatic actuator system,” Micro Electro Mechanical Systems, ''Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots''. , IEEE, 1990
[12]Products P-780, Physik Instrumente Product Catalog, 2005
[13]W. J. Kim, D. L. Trumper, and J. B. Bryan, “Linear-motor-levitated stage for photolithography,” Manuf. Technol.: Ann. CIRP, Vol.46, no.1, pp. 447–450, Oct. 1997.
[14]W. J. Kim, D. L. Trumper, and J. H. Lang, “Modeling and vector control of planar magnetic levitator,” in IEEE Trans. Ind. Applicat., Vol.34, no.6, pp. 1254-1262, Nov./Dec. 1998.
[15]W. J. Kim, “Six-axis nano-positioning with planar magnetic levitation,” in IEEE-Nano, 1st IEEE conference on Nanotechnology, Oct. 2001.
[16]K. Halbach, “Design of permanent multipole magnets with orientaed rare earth cobalt material,” Nucl. Instrum. Methods, Vol. 169, no.1, pp. 1-10, 1980.
[17]D. L. Trumper, M. C. Weng, and R. J. Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” in Proc. IEEE CCA-CACSD ’99, pp. 551–557.,1999

[18]F. Auer and H. F. van Beek, “Practical application of a magnetic bearing and linear propulsion unit for six degrees of freedom positioning,” in Proc. 4th Int. Symp. Magnetic Bearings, pp. 183–188, 1994.
[19]L. Molenaar, “A novel planar magnetic bearing and motor configuration applied in a positioning stage,” Ph.D thesis, Delft University of Technology, 2000.
[20]S. Verma, W. J. Kim, and J. Gu, “Six-Axis Nanopositioning Device With Precision Magnetic Levitation Technology” in IEEE/ASME Trans. on Mechatronics, Vol. 9, no. 2, JUNE 2004
[21]吳坤男. “Integrated Design and Control of a Magnetically Levitated Guiding System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1997.
[22]王銘智, “Model and Controller Design of a Maglev Guiding System for Application in Precision Positioning.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1998
[23]黃心威, “Modeling and Controller Design of a Dual-Axis Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1999.
[24]王晉中, “A Dual-Axis Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2000.
[25]林佐柏, “Design, Control, and Experiment of a Novel Planar Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2002.
[26]蔡嘉峰, “Integrated Design and Control to Improve Robustness and Upgrade Positioning Precision on a Planar Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2003.
[27]X. Shan, S. K. Kuo, J. Zhang, and C. H. Menq, “Uulra precision motion control of a multiple degrees of freedom magnetic suspension stage,” in IEEE/ASME Trans. Mechatronics., Vol. 7, no. 1, March 2002.
[28]J. H. Zhang and C. H. Menq, “A linear/angular interferometer capable of measuring large angular motion,” Meas. Sci. Technol., no. 10, pp. 1247–1253, 1999.
[29]M. Holmes, R. Hocken, and D. Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” in Journal of the International Societies for Precision Engineering and Nanotechnology, 2000
[30]S. K. Hung, E. T. Hwu, and L. C. Fu, “Design and Experiment of Range-Extended Fiber Fabry-Perot Interferometer Utilizing the Second Harmonic Displacement Modulation,” in Proc. IEEE AIM, 2005
[31]H. A.Haus and J.R. Melcher, “Electromagnetic Fields and Energy,” Inc. 1996
[32]R. C. Hibbeler, “Mechanics of Materials,” Fourth edition, Prentice Hall, 2000
[33]G. Keiser, Optical Fiber Communications, 2nd Edition, McGRAW-Hill Inc., 1991, p. 114.
[34]Products P-280 and P-762, Physik Instrumente Product Catalog, 2001, MicroPostioning, NanaoPositioning, NanoAutomation: Solutions for Cutting-Edge Technologies
[35]F. L. Fischer, 1981, “Symmetrical 3 DOF Compliance Structure”, US Patent 4447048
[36]A. R Smith., S. Gwo, and C. K. Shih, “A new high resolution two-dimensional micropositioning device for scanning probe microscopy”, Review of Scientific Instruments, Vol. 64, no. 10, pp 3216-3219, 1994
[37]N. G. Dagalakis, J. A. Kramer, E. Amatucci, R. Bunch, “Kinematic Modelling and Analysis of Planer Micro-positioner”, in Proceedings of ASPE Annual Meeting, pp 135-138, 2001


[38]“Agilent Technologies NanoStepper”, MIT Technology Review, pp. 14. June 2003.
[39]J. G. Bednorz., et al, 1985, Piezoelectric XY Positioner, US Patent 452 0570
[40]J. W. Ryu, D. G. Gweon, and K. S. Moon., “Optimal Design of a Flexure hinge based X-Y-θwafer stage”, Journal of Precision Engineering, Vol.21 no.1, pp 18-28, 1997
[41]T. B. Eom and J. Y. Kim, “Long Range Stage for the Metrological Atomic Force Microscope”, in Proceedings of ASPE 2001 Annual Meeting, pp. 156-159, 2001
[42]Kanai et al, “An Elastic Fine Positioning Mechanism Applied to Contactless X-Y Table”, Bulletin of JSPE, Vol 17, no. 4, pp 265-266, 1983
[43]B. H. Tongue, “Principles of Vibration,” 2nd edition, Oxford
[44]L. Ljung, System identification : theory for the user, Upper Saddle River, NJ : Prentice Hall PTR, c1999, 2nd edition
[45]G. R. Duan, Z. Y. Wu, C. Bingham, and D. Howe, “Robust magnetic bearing control using stabilizing dynamical compensators,” in IEEE Trans. Ind. Applicat., Vol. 36, no. 6, Nov./Dec. 2000.
[46]G. R. Duan and D. Howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” in IEEE Trans. Contr. Syst. Technol., Vol. 11, no. 2, March 2003.
[47]Y. K. Kim and Y. Park, Corrections to “Robust control for linear discrete-time systems with norm-bounded nonlinear uncertainties,” in IEEE Trans. Automat. Contr., Vol. 48, no. 8, Aug. 2003.
[48]J. D. Lindlar and C. R. Knospe, “Feedback linearization of an active magnetic bearing with voltage control,” in IEEE Trans. Contr. Syst. Technol., Vol. 10, no. 1, Jan. 2002.

[49]T. Tsujino, K. I. Nakashima, and T. Fujii, “Application of control and closed loop identification to a magnetic levitation system,” AJC, Vol. 4, no. 4, pp. 283-296, Dec. 1999.
[50]Y. Xia and U. Jia, “Robust sliding-mode control for uncertain time-delay systems: An LMI approach,” in IEEE Trans. Automat. Contr., Vol. 48, no. 6, June 2003.
[51]T. Maruicia, S. R. Hebertt, and E. Gerardo, “Sliding mode nonlinear control of magnetic bearings,” in IEEE Proceedings of the CCA, USA, Aug. 22-27, 1999.
[52]S. L. Edmonds and J. K. Pieper, “Discrete sliding mode control of magnetic bearings,” in IEEE Proceedings of the CCA, USA, Sept. 25-27, 2000.
[53]C. C. Wang, M.Y. Chen, and L. C. Fu, ”Adaptive sliding mode controller design of a MagLev guiding system for application in precision positioning,” in IEEE Proceedings of the ACC, June 2000.
[54]S. K. Hong and R. Langari, “Robust Fuzzy control of a magnetic bearing system subject to harmonic disturbances,” in IEEE Trans. Contr. Syst. Technol., Vol. 8, no. 2, March 2000.
[55]Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” in IEEE Trans. Circuits Syst. I, Vol. 48, no. 7, July 2001.
[56]K. Seok and Y. Kim, “Robust backstepping control for slew maneuver using nonlinear tracking function,” in IEEE Trans. Contr. Syst. Technol., Vol. 11, no. 6, Nov. 2003.
[57]K. S. Narendra and A. M. Annaswamy, “Robust Adaptive control in the presence of bounded disturbances,” in IEEE Trans. Automat. Contr., Vol. AC-31, no. 4, April 1986.


[58]Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems represented by imput- output models,” in IEEE Trans. Automat. Contr., Vol. 48, no. 6, June 2003.
[59]Z. Qu, “Adaptive and robust controls of uncertain systems with nonlinear parameterization,” in IEEE Trans. Automat. Contr., Vol. 48, no. 10, Oct. 2003.
[60]S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” in IEEE Trans. Automat. Contr., Vol. 48, no. 8, Aug. 2003.
[61]J. J. E. Slotine, Weiping Li; Applied nonlinear control, Prentice Hall, 1990.
[62]P. A. Ioannou, and J.Sun; Robust Adaptive Control, Prentice Hall, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top