|
[1]A. Daniele; S. Salapaka; M.V. Salapaka; M. Dahleh; “Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control,” in Proc. of American Control Conference, Vol.1, pp.253 – 257, 1999. [2]T. Galante et al., “Design, modeling, and performance of a high force piezoelectric inchworm motor,” in Proc. Smart Structures and Integrated Systems, Vol. 3329, pp.756–767, 1998. [3]N. Shimizu, T. Kimura, T. Nakamura, and I. Umebu, “An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism,” J. Vac. Sci. Tech. A, Vol.8, no. 1, pp.333–335, 1990. [4] P. E. Tenzer and R. B. Mrad, “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners,” in IEEE/ASME Trans. on Mechatronics, Vol.9, no.2, 2004. [5] J. Y. Shim, and D. G. Gweon, “Piezo-driven metrological multiaxis nanopositioner,” Review of Scientific Intruments, American Institute of Physics, 2001. [6] S.T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon & Breach, Amsterdam, 2000 [7] S. H. Chang, C. E. Tseng, and H. C. Chien, “An ultra-precision XYθZ piezo micropositioner Part I: Design and analysis,” in IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol.46, no.4, pp.897-905, Jul. 1999. [8] S. Salapaka, “Control of the Nanopositioning Devices,” in Proc. of Conference on Decision and Control, 2003. [9] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges,” in IEEE Trans. on Robotics and Automation, Vol.19, no.4, 2003 [10]S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” PhD thesis, Massachusetts Institute of Technology, 2004 [11]K. S. J Pister, R. S. Fearing, and R.T Howe, “A planar air levitated electrostatic actuator system,” Micro Electro Mechanical Systems, ''Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots''. , IEEE, 1990 [12]Products P-780, Physik Instrumente Product Catalog, 2005 [13]W. J. Kim, D. L. Trumper, and J. B. Bryan, “Linear-motor-levitated stage for photolithography,” Manuf. Technol.: Ann. CIRP, Vol.46, no.1, pp. 447–450, Oct. 1997. [14]W. J. Kim, D. L. Trumper, and J. H. Lang, “Modeling and vector control of planar magnetic levitator,” in IEEE Trans. Ind. Applicat., Vol.34, no.6, pp. 1254-1262, Nov./Dec. 1998. [15]W. J. Kim, “Six-axis nano-positioning with planar magnetic levitation,” in IEEE-Nano, 1st IEEE conference on Nanotechnology, Oct. 2001. [16]K. Halbach, “Design of permanent multipole magnets with orientaed rare earth cobalt material,” Nucl. Instrum. Methods, Vol. 169, no.1, pp. 1-10, 1980. [17]D. L. Trumper, M. C. Weng, and R. J. Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” in Proc. IEEE CCA-CACSD ’99, pp. 551–557.,1999
[18]F. Auer and H. F. van Beek, “Practical application of a magnetic bearing and linear propulsion unit for six degrees of freedom positioning,” in Proc. 4th Int. Symp. Magnetic Bearings, pp. 183–188, 1994. [19]L. Molenaar, “A novel planar magnetic bearing and motor configuration applied in a positioning stage,” Ph.D thesis, Delft University of Technology, 2000. [20]S. Verma, W. J. Kim, and J. Gu, “Six-Axis Nanopositioning Device With Precision Magnetic Levitation Technology” in IEEE/ASME Trans. on Mechatronics, Vol. 9, no. 2, JUNE 2004 [21]吳坤男. “Integrated Design and Control of a Magnetically Levitated Guiding System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1997. [22]王銘智, “Model and Controller Design of a Maglev Guiding System for Application in Precision Positioning.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1998 [23]黃心威, “Modeling and Controller Design of a Dual-Axis Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1999. [24]王晉中, “A Dual-Axis Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2000. [25]林佐柏, “Design, Control, and Experiment of a Novel Planar Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2002. [26]蔡嘉峰, “Integrated Design and Control to Improve Robustness and Upgrade Positioning Precision on a Planar Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2003. [27]X. Shan, S. K. Kuo, J. Zhang, and C. H. Menq, “Uulra precision motion control of a multiple degrees of freedom magnetic suspension stage,” in IEEE/ASME Trans. Mechatronics., Vol. 7, no. 1, March 2002. [28]J. H. Zhang and C. H. Menq, “A linear/angular interferometer capable of measuring large angular motion,” Meas. Sci. Technol., no. 10, pp. 1247–1253, 1999. [29]M. Holmes, R. Hocken, and D. Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” in Journal of the International Societies for Precision Engineering and Nanotechnology, 2000 [30]S. K. Hung, E. T. Hwu, and L. C. Fu, “Design and Experiment of Range-Extended Fiber Fabry-Perot Interferometer Utilizing the Second Harmonic Displacement Modulation,” in Proc. IEEE AIM, 2005 [31]H. A.Haus and J.R. Melcher, “Electromagnetic Fields and Energy,” Inc. 1996 [32]R. C. Hibbeler, “Mechanics of Materials,” Fourth edition, Prentice Hall, 2000 [33]G. Keiser, Optical Fiber Communications, 2nd Edition, McGRAW-Hill Inc., 1991, p. 114. [34]Products P-280 and P-762, Physik Instrumente Product Catalog, 2001, MicroPostioning, NanaoPositioning, NanoAutomation: Solutions for Cutting-Edge Technologies [35]F. L. Fischer, 1981, “Symmetrical 3 DOF Compliance Structure”, US Patent 4447048 [36]A. R Smith., S. Gwo, and C. K. Shih, “A new high resolution two-dimensional micropositioning device for scanning probe microscopy”, Review of Scientific Instruments, Vol. 64, no. 10, pp 3216-3219, 1994 [37]N. G. Dagalakis, J. A. Kramer, E. Amatucci, R. Bunch, “Kinematic Modelling and Analysis of Planer Micro-positioner”, in Proceedings of ASPE Annual Meeting, pp 135-138, 2001
[38]“Agilent Technologies NanoStepper”, MIT Technology Review, pp. 14. June 2003. [39]J. G. Bednorz., et al, 1985, Piezoelectric XY Positioner, US Patent 452 0570 [40]J. W. Ryu, D. G. Gweon, and K. S. Moon., “Optimal Design of a Flexure hinge based X-Y-θwafer stage”, Journal of Precision Engineering, Vol.21 no.1, pp 18-28, 1997 [41]T. B. Eom and J. Y. Kim, “Long Range Stage for the Metrological Atomic Force Microscope”, in Proceedings of ASPE 2001 Annual Meeting, pp. 156-159, 2001 [42]Kanai et al, “An Elastic Fine Positioning Mechanism Applied to Contactless X-Y Table”, Bulletin of JSPE, Vol 17, no. 4, pp 265-266, 1983 [43]B. H. Tongue, “Principles of Vibration,” 2nd edition, Oxford [44]L. Ljung, System identification : theory for the user, Upper Saddle River, NJ : Prentice Hall PTR, c1999, 2nd edition [45]G. R. Duan, Z. Y. Wu, C. Bingham, and D. Howe, “Robust magnetic bearing control using stabilizing dynamical compensators,” in IEEE Trans. Ind. Applicat., Vol. 36, no. 6, Nov./Dec. 2000. [46]G. R. Duan and D. Howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” in IEEE Trans. Contr. Syst. Technol., Vol. 11, no. 2, March 2003. [47]Y. K. Kim and Y. Park, Corrections to “Robust control for linear discrete-time systems with norm-bounded nonlinear uncertainties,” in IEEE Trans. Automat. Contr., Vol. 48, no. 8, Aug. 2003. [48]J. D. Lindlar and C. R. Knospe, “Feedback linearization of an active magnetic bearing with voltage control,” in IEEE Trans. Contr. Syst. Technol., Vol. 10, no. 1, Jan. 2002.
[49]T. Tsujino, K. I. Nakashima, and T. Fujii, “Application of control and closed loop identification to a magnetic levitation system,” AJC, Vol. 4, no. 4, pp. 283-296, Dec. 1999. [50]Y. Xia and U. Jia, “Robust sliding-mode control for uncertain time-delay systems: An LMI approach,” in IEEE Trans. Automat. Contr., Vol. 48, no. 6, June 2003. [51]T. Maruicia, S. R. Hebertt, and E. Gerardo, “Sliding mode nonlinear control of magnetic bearings,” in IEEE Proceedings of the CCA, USA, Aug. 22-27, 1999. [52]S. L. Edmonds and J. K. Pieper, “Discrete sliding mode control of magnetic bearings,” in IEEE Proceedings of the CCA, USA, Sept. 25-27, 2000. [53]C. C. Wang, M.Y. Chen, and L. C. Fu, ”Adaptive sliding mode controller design of a MagLev guiding system for application in precision positioning,” in IEEE Proceedings of the ACC, June 2000. [54]S. K. Hong and R. Langari, “Robust Fuzzy control of a magnetic bearing system subject to harmonic disturbances,” in IEEE Trans. Contr. Syst. Technol., Vol. 8, no. 2, March 2000. [55]Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” in IEEE Trans. Circuits Syst. I, Vol. 48, no. 7, July 2001. [56]K. Seok and Y. Kim, “Robust backstepping control for slew maneuver using nonlinear tracking function,” in IEEE Trans. Contr. Syst. Technol., Vol. 11, no. 6, Nov. 2003. [57]K. S. Narendra and A. M. Annaswamy, “Robust Adaptive control in the presence of bounded disturbances,” in IEEE Trans. Automat. Contr., Vol. AC-31, no. 4, April 1986.
[58]Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems represented by imput- output models,” in IEEE Trans. Automat. Contr., Vol. 48, no. 6, June 2003. [59]Z. Qu, “Adaptive and robust controls of uncertain systems with nonlinear parameterization,” in IEEE Trans. Automat. Contr., Vol. 48, no. 10, Oct. 2003. [60]S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” in IEEE Trans. Automat. Contr., Vol. 48, no. 8, Aug. 2003. [61]J. J. E. Slotine, Weiping Li; Applied nonlinear control, Prentice Hall, 1990. [62]P. A. Ioannou, and J.Sun; Robust Adaptive Control, Prentice Hall, 1998.
|