跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林華生
研究生(外文):Hua-Sheng Lin
論文名稱:以數位信號處理器實現符合M3S輸入及輸出之輔具研究
論文名稱(外文):Research of Input and Output Assistive Devices Based on M3S Using Digital Signal Processors
指導教授:郭德盛郭德盛引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:86
中文關鍵詞:醫療輔具多主多從KSLDMS
外文關鍵詞:rehabilitation engineeringM3SDMSKSL
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,由於對於復健工程的重視以及醫療輔具需求量的增加,使醫療輔具除了具有多樣性之外,其效能也日趨進步。雖然輔具製造商持續對於醫療輔具的研究投入許多人力及物力,但由於缺乏專為輔具制訂之開放規範,使得輔具開發與整合不易,造成輔具間的溝通與銜接不易。多主多從(Multiple Master Multiple Slave, M3S) 提供輔具設計一個公開的標準,它是參照ISO-OSI(International Standard Organization-Open System Interconnection)的簡化模型。M3S強調醫療輔具的安全性,且在M3S中,對於其物理層、網路層及應用層分別都有定義與規範。M3S提供醫療輔具系統整合,進而幫助殘障者恢復其原有生理機能。
在發展醫療輔具其間,安全性是工程師不可或缺且需要關注的議題,特別是對於殘障者而言。在M3S系統匯流排中有兩大重要部分:數位控制資料的傳輸及輔具裝置的安全即時監控。所有連接在M3S匯流排的醫療輔具,皆以區域網路協定(Controller Area Network, CAN)來傳輸資料。然而在安全機制的考量下,M3S利用兩個額外的電路迴路,監控醫療輔具的安全狀態,即KSL(Key Switch Latch)與DMS(Dead Man Switch)。此兩個安全機制可以確保使用者在操作系統時,能夠同時監控系統的狀態。而本論文將重點放在嵌入於M3S系統匯流排中KSL與DMS的獨立安全電路機制的開發與研究。
在此論文中,我們瞭解M3S為一個資料傳輸與輔具安全並重的設計。根據此架構來設計通用的輸出與輸出裝置的介面。除此之外,我們也利用DSP提供的豐富內建的模組,自行開發輸入及輸出裝置原型,並在此原型上,結合M3S的介面,進而與M3S中的控制與調變模組(Control & Configuration Module, CCM)整合,以驗證M3S實體層與網路層的安全機制。其中,本論文開發的輸入裝置為頭控裝置,輸出裝置為輪椅馬達以及機械手臂,並加入M3S的通信及安全機制,建立以M3S為基礎之醫療輔具系統。
A variety of assistive devices are more developed according to the advances of the rehabilitation engineering. Disabled people are eager for the assistive devices to promote their life and quality in daily living. Although many manufacturers devote to the researches of the assistive devices, there is no open standard for the development of assistive devices. Multiple Master Multiple Slave (M3S) is an open standard. It is a simplified model which refers to the ISO-OSI (International Standard Organization-Open System Interconnection). In addition, the M3S aims at the safety of assistive devices, and it also describes the physical layer and network layer of the M3S reference model. M3S can apply system integration and allow disabled people to recover their physical abilities.
During the development of assistive devices, safety is a critical issue that must be concerned, especially for the disabled user. The M3S system bus consists of digital signal transmission and real-time safety monitoring. The assistive devices, which connect to the M3S bus, transmit data by the CAN (Controller Area Network) protocol. Moreover, from the safety mechanism considerations, the M3S utilizes two additional lines and circuitry, i.e. KSL (Key Switch Latch) and DMS (Dead Man Switch). They can ensure the system status when users operate the assistive devices, and in this thesis, more emphasis will put on the development of KSL and DMS.
M3S puts emphasis on both users’ safety and the data transmission of assistive devices. We design the general input and output adapters based on this concept. In addition to the adapters, we design some general input and output devices based on DSP (Digital Signal Processor) and combine these devices with the M3S adapter. Furthermore, we integrate the M3S adapters with the CCM (Control & Configuration Module) and implement the safety mechanism in the physical layer and the network layer. The input device is a head-controlled device, and the output devices are the motor circuitry of the powered wheelchair and the manipulator. Finally, we successfully utilize the control protocol (CAN) with the safety mechanism (KSL/DMS) to establish the system based on the M3S standard.
誌謝 III
摘要 V
Abstract IX
Publications XI
Contents XIII
List of Figures XV
List of Tables XIX
Chapter 1 1
Background 1
1.1 Conventional assistive device 1
1.2 Multiple Master Multiple Slave (M3S) 3
1.3 Thesis architecture 5
Chapter 2 7
Introduction 7
2.1 Evolution of the M3S 7
2.2 M3S Reference Model (M3S RM) 9
2.3 System bus architecture 14
2.4 M3S finite state model 17
2.5 NTU assistive system architecture 18
Chapter 3 21
Development Tools 21
3.1 DSP control system 21
3.2 Hardware 24
3.3 Software 36
Chapter 4 41
Design of the Assistive Devices and Safety Circuitry 41
4.1 Powered wheelchair specification 41
4.2. Input device of the NTU assistive system 43
4.3. Output device of the NTU assistive system 50
4.4. Safety circuitry of input and output devices 58
Chapter 5 65
Results and Discussion 65
5.1 Input devices 65
5.2 Output devices 68
5.3 Safety circuitry of KEY and DMS 71
5.4 The NTU assistive system 73
Chapter 6 77
Conclusions and Future Work 77
6.1 Conclusions 77
6.2 Future work 78
References 79
Appendix A. 81
The Motor Classes of the Manipulator 81
Appendix B. 83
The M3S Reference Circuitry 83
[1] M3S Reference Manual, Version 2.00-revision 9, July 1997. Available: http://www.tno.nl/m3s/
[2] M. Mazo, “An Integral System for Assisted Mobility,” IEEE Robot. Automat. Mag. 8(1), pp. 46-56, 2001
[3] S. Linnman, “M3S: The Local Network for Electric Wheelchairs and Rehabilitation Equipment,” IEEE Trans. on Rehab. Eng. 4(3), pp. 188-192 Sept. 1996
[4] M. W. Nelisee,” CAN in the rehabilitation field: M3S”,
[5] CAN Specification, Version 2.0, ROBERT BOSCH GmbH, 1991.
[6] J. A. van Woerden, M. W. Nelisse, C. Perricos, R. D. Jackson, B Davies, R. D. Hibberd, D. Banerjee, “M3S-A Standard Communication Architecture for Rehabilitation Applications,” Comput. & Contrl. Eng. J. 5(5), pp. 213 –218, Oct. 1994
[7] TMS320LF2407 Evaluation Module Technical Reference, January 2001, Spectrum Digital.
[8] TMS320LF/LC24oxA DSP Controllers Reference Guide, System and Peripherals, Texas Instruments, 2001.
[9] Understanding the CAN Controller on the TMS320C24xDSP Controller, December 1998, Texas Instruments.
[10] Richard Sikora, C2000 Teaching Materials, Texas Instruments, 2001.
[11] R. A. Cooper, “Intelligent Control of Power Wheelchairs,” IEEE Eng. in Med. & Bio. Mag. 14(4), pp. 423-431, 1995
[12] UV-1W, Datasheet, Midori Precisions Co. Ltd., Mar, 1997.
http://www.midori.co.jp/l
[13] 陳俊凡,“以數位信號處理器整合之多主多從系統”, 國立臺灣大學碩士論文 2004年6月
[14] LMD18200, Datasheet, National Semiconductor Corp., April, 2005.
http://www.national.com/

[15] B. Davies, R. Hibberd, “A Safe Communication System for Wheelchair-Mounted Medical Robots,” Comput. & Contrl. Eng. J. 6(5), pp. 216 –221, Oct. 1995
[16] Mini Serial Servo Controller (SSC) for R/C Servos, Datasheet, Scott Edwards Electronics Inc., Jan, 1999.
http://www.seetron.com/
[17] Yi-chu Chang, Chiun-fan Chen, Jer-junn Luh, Jin-shin Lai, Fok-ching Chong, “Use of M3S for Mobile/Local Controls over a Remote/Fixed Environment”, 26th Annual Int. Conf. IEEE Eng. in Med. & Bio. Soc., 1-5, September, 2004
[18] Chiun-fan Chen, Yi-chu Chang, Jer-junn Luh, Fok-ching Chong, “M3S System Prototype – A Comprehensive System with Straightforward Implementation”, IEEE Conf. on Cntrl. Appl., 2-4, Sep 2004
[19] Chiun-fan Chen, Yi-chu Chang, Heng-yin Chen, Jin-shin Lai, Fok-ching Chong, “A Generic Input Device For The Multiple Master Multiple Slave System”, 26th Annual Int. Conf. IEEE Eng. in Med. & Bio. Soc., 1-5, September, 2004
[20] Hua-sheng Lin, Yi-chu Chang, Chiun-fan Chen, Jin-shin Lai, Te-Son Kuo “Safety Assurance of Assistive Devices Based on a Two-Level Checking Scheme”, 27th Annual Int. Conf. IEEE Eng. in Med. & Bio, September, 2005, Shanghai, China.
[21] 張逸竹 “以數位信號處理器實現輪椅監控系統符合M3S及無線環境” 國立臺灣大學碩士論文 2005
[22]歐陽遙 “符合多主多從電動輪椅控制器與安全迴授系統” 國立臺灣大學碩士論文 2005
[23]陳�畬� “符合多主多從之自動導航輪椅與遠端監控系統”國立臺灣大學碩士論文 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top