|
[1] Open Directory Project (ODP). In http://dmoz.org/. [2] The Discussion Board of eDonkey. In http://www.cyndi.idv.tw/forum/index.php. [3] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In Proc. of the International Conference on Cooperative Information Systems, 2001. [4] R. Agrawal, T. Imielinski, and A. Swami. Mining Associations between Sets of Items in Massive Databases. In Proceeding of ACM SIGMOD, pages 207—216, May 1993. [5] R. Agrawal and J. Shafer. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, pages 8(6):866—883, December 1996. [6] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. Proc.of the 20th International Conference on Very Large Data Bases, pages 478—499, 1994. [7] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of International Conference on Data Engineering (ICDE’95), pages 3—14, Mar 1995. [8] AltaVista. In http://www.altavista.com/. [9] R. Armstrong, D. Freitag, T. Joachime, and T. Mitchell. WebWatcher: A Learning Apprentice for the World Wide Web. AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, March 1995. [10] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring Documents, Databases and Webs. Proceedings of the 14th International Conference on Data Engineering, February 1998. [11] M. Balabanovic and Y. Shoham. Learning Information Retrieval Agents: Experiments with AutomatedWeb Browsing. AAAI Spring Symposium Series on Information Gathering from Distributed, Heterogeneous Environments, Working Notes, 1995. [12] K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public Web search engines. Proceedings of the Seventh International World-Wide Web Conference, Brisbane, Australia, 1998. [13] L. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hyperbus Structures for a Computer Network. volume C-33, pages 323—333, 1984. [14] Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Proc. of the 7th International World Wide Web Conference, 1998. [15] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Proc. 7th Int. WWW Conf., April 1998. [16] C. Buckley, G. Salton, and J. Allan. The Effect of Adding Relevance Information in a Relevance Feedback Environment. International ACM SIGIR Conference on Research and Development in Information Retreival, 1994. [17] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimization Techniques for Unstructured Data. Proceedings of ACM SIGMOD, pages 505—516, June 1996. [18] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Automatic resource compilation by analyzing hyperlink structure and associated text. Proc. of the 7th International World Wide Web Conference, 1998. [19] S. Chakrabarti, B. Dom, D. Gibson, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Experiments in Topic Distillation. ACM SIGIR workshop on Hypertext Information Retrieval on the Web, 1998. [20] S. Chakrabrti, B. Dom, D. Gibson, J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tompkins. Mining the Link Structure of the World Wide Web. IEEE Computer, August 1998. [21] T. F. Chan and Y. Saad. Multigrid Algorithms on the Hypercube Multiprocessor. IEEE Trans. on Computers, C-35(11):969—977, 1986. [22] S. Chawather, H. G. Molina, J. Hammer, K. Irland, Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. Proceedings of SPSJ Conf., 1994. [23] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866—833, 1996. [24] M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2), April 1998. [25] M. S. Chen, P. S. Yu, and K. L. Wu. Optimal NODUP All-To-All Broadcasting Schemes in Distributed Computing Systems. IEEE Trans. on Parallel and Distributed Systems, 5:1275— 1285, 1994. [26] D.W. Cheung, V. T. Ng,W. Fu, and Y. Fu. Efficient Mining Association Rules in Distributed Databases. IEEE Transactions on Knowledge and Data Engineering, pages 8(6):911— 922, December 1996. [27] Clip2.com. The Gnutella Protocol Specification V0.4. In http://www9.limewire.com/developer/ gnutella_protocol_0.4.pdf. [28] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern Discovery on the World Wide Web. IEEE Conf. on Tools with Artificial Intelligence, pages 558—567, 1997. [29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. TheMIT Press/McGraw-Hill Book Company, 1990. [30] A. Crespo. Routing Indices for Peer-to-Peer Systems. In Proc. Of the 22nd International Conf. On Distributed Computing Systems (ICDCS), 2002. [31] A. F. E. Cohen and H. Kaplan. Associative Search in Peer to Peer Networks: Harnessing Latent Semantics. In IEEE INFOCOM 2003, 2003. [32] edonkey. In http://www.edonkey2000.com/. [33] R. Fielding, J. Gettys, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Technical Report Request for Comments: 2068 Internet Engineering Task Force, Jan 1997. [34] Y. Fu, K. Sandhu, and M. Shih. Clustering of Web users based on access patterns. 1999. [35] D. Gibson, J. Kleinberg, and P. Raghavan. InferringWeb Communities from Link Topology. ACM Conference on Hypertext and Hypermedia, 1998. [36] Google. In http://www.google.com/. [37] Grokster. In http://www.grokster.com/. [38] N. Gunther. Hypernets - Good (G)news for Gnutella. In http://www.perfdynamics.com/Papers/Gnews.html, 2002. [39] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series Database. Proceeding of the 15th International Conference on Data Engineering, March 1999. [40] F. Harary. Graph Theory. Mass.: Addison-Wesley, 1969. [41] D. Hardy and M. F. Schwartz. Essence: A Resource Discovery System Based on Semantic File Indexing. Proc. of the USENIX Winter Conf., pages 361—374, 1993. [42] X.-M. Huang, C.-Y. Chang, and M.-S. Chen. PeerCluster: A Cluster-Based Peer-to-Peer System forWeb Data Sharing. accepted by IEEE Trans. on Parallel and Distributed Systems, 2005. [43] B. m. K. Sripanidkulchai and H. Zhang. Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems. In IEEE INFOCOM 2003, 2003. [44] Kazaa. In http://www.kazaa.com/. [45] J. Kleinberg. Authoritative Sources in a Hyper Linked Environment. Proc. of ACM-SIAM Symposium on Discrete Algorithms, 1998. [46] D. Konopnicki and O. Shmueli. Information Gathering in the WWW: The W3QL Query Language and the W3QS system. ACM Transactions on Database Systems, Dec. 1998. [47] R. Laboratories. Answers to Frequently Asked Questions About Today’s Cryptography Version 3.0. Technical report, 1996. [48] L. Lakshmanan, F. Sadri, and I. Subramanian. A Declarative Language for Querying and Restructuring the Web. Proc. 6th Int. Workshop on Research Issues in Data Engineering, 1996. [49] T.-B. Lee, R. Cailliau, A. Loutonen, and A. Secret. TheWorld-WideWeb. Communications of the ACM, pages 76—82, 1994. [50] J. Liebeherr and T. K. Beam. HyperCast: A Protocol for Maintaining Multicast Group Members in a Logical Hypercube Topology. In Proc. 1st InternationWorkshop on Networked Group Communication (NGC’99), 1999. [51] C.-C. Lin and M.-S. Chen. Vipas: Virtual link powered authority search in the web. Proc. of the 29th Intern’l Conf. on Very Large Data Bases (VLDB-2003), September 2003. [52] I.-Y. Lin and M.-S. Chen. On Methodology for Client-Based User Access Pattern Collection in the Web. In Proceeding of the 11th Conference on Information Networking, Jan 1997. [53] J. L. Lin and M. H. Dunham. Mining Association Rules: Anti-Skew Algorithms. Proceedings of the 14th International Conference on Data Engineering, pages 486—493, February 1998. [54] Q. Liv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstructured Peer-to-Peer Network. In Proc. of ACM SIGMETRIC’02, 2002. [55] Lycos. In http://www.lycos.com/. [56] S. D. M. Schlosser, M. Sintek and W. Nejdl. A scalable and ontology-based P2P infrastructure for semantic web services. In Proc. of the 2th International Conference on Peer-to-Peer Computing, pages 104—111, 2002. [57] B. Mobasher, N. Jain, E.-H. Han, and J. Srivastava. Web Mining: Pattern Discovery from World Wide Web Transactions. Technical Report TR 96-050, Univ. of Minnesota, Dept. of CS, Minneapolis, 1996. [58] Napster Inc. Napster Website. In http://www.napster.com. [59] W.Nejdl,M.Wolpers,W. Siberski, C. Schmitz,M. S. andI. Brunkhorst, andA. Lser. Super- Peer-Based Routing and Clustering Strategies for RDF-Based Peer-To-Peer Networks. In In Proceedings of the 12th International World Wide Web Conference (WWW2003), Budapest, Hungary, 2003. [60] R. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. Proceedings of the 18th International Conference on Very Large Data Bases, pages 144—155, September 1994. [61] T. R. I. A. of America (RIAA). Peer-to-peer file-sharing technology: Consumer protection and competition issues. P2P File-Sharing Workshop, November 2004. [62] J.-S. Park, M.-S. Chen, and P. S. Yu. Using a Hash-Based Method with Transaction Trimming forMining Association Rules. IEEE Transactions on Knowledge and Data Engineering, 9(5):813—825, October 1997. [63] M. Pazzani, L. Nguyen, and S. Mantik. Towards aWWWInformation Filtering and Seeking Agent. IEEE 1995 Inta˛e˛l Conf. on Tools with Artificial Intelligence, 1995. [64] J. Pitkow and K. K. Bharat. WebViz: A Tool for World-Wide Web Access Log Analysis. Proceedings of the 2nd WWW Conference, 1995. [65] A. press release on the July 2000 study is available at http://www.cyveillance.com/newsroom/pressr/000710.asp. [66] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content- Addressasble Network. In Proc. Of SIGCOMM’01, 2001. [67] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Proceedings of the ACM/IFIP/USENIX Middleware conference, 2003. [68] J. Ritter. Why Gnutella Can’t Scale? No, Really. In http://www.darkridge.com/ jpr5/doc/gnutella.html. [69] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc. Of the 18th IFIP/ACM International Conf. On Distributed Systems Platforms (Middleware 2001), 2001. [70] G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text Retrieval. Technical Report 87-881, Department of Computer Science, Cornel University, 1987. [71] H. Schutze, D. Hull, and J. Pedersen. A Comparison of Classifiers and Document Representations for the Routing Problem. International ACM SIGIR Conference on Research and Development in Information Retrieval, 1995. [72] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel Classifier for Data Mining. Proceedings of the 22th International Conference on Very Large Databases, September 1996. [73] E. Spertus. Parasite: Mining structural information on the web. Proc. of the 6th InternationalWorld Wide Web Conference, 1997. [74] K. Sripanidkulchai. The Popularity of Gnutella Queries and Its Implications on Scalability. In http://www.cs.cmu.edu/ kunwadee/research/p2p/ gnutella.html. [75] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location and Retrieval in Peer-to-Peer Systems by Exploiting Locality in Interests. In Proc. of ACM SIGCOMM’01, 2001. [76] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. ACM-SIGKDD Explorations, January 2000. [77] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proc. Of SIGCOMM’2001, 2001. [78] S. M. Weiss and C. A. Kulikowski. Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufmann, 1991. [79] J. Xiao, Y. Zhang, X. Jia, and T. Li. Measuring similarity of interests for clustering webusers. Proceedings of 12th Australasian Database Conference, Gold Coast, Jan. 2001. [80] Y. Xie and V. V. Phoha. Web User Clustering from Access Log Using Belief Function. Proceedings of ACM K-CAP’01, First International Conference On Knowledge Capture„ ACM Press, Victoria, British Columbia, Canada, 2001. [81] L. B. N. L. Y. Chawathe, S. Ratnasamy and S. Shenker. Making Gnutella-link P2P Systems Scalable. In SIGCOMM 03, 2003. [82] Yahoo. In http://www.yahoo.com/. [83] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. In Proc. Of Very Large Database (VLDB), 2001. [84] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Systems. In Proc. Of the 22nd International Conf. On Distributed Computing Systems (ICDCS), 2002. [85] O. Zaiane and J. Han. WebML: Querying the World-Wide Web for Resources and Knowledge. Proc. (CIKM’98) Int’l Workshop on Web Information and Data Management (WIDM’98), Nov. 1998. [86] O. R. Zaiane. Resources and Knowledge Discovery from the Internet and Multimedia Repositories. In PhD thesis, Simon Fraser University, Dept. of Computer Science, March 1999. [87] O. R. Zaiane, M. Xin, and J. Han. DiscoveringWeb Access Patterns and Trends by Applying OLAP and Data Mining Technology onWeb Logs. Proc. Advances in Digital Libraries Conf. (ADL’98), Santa Barbara, CA, pages 19—29, April 1998. [88] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-Tolerant Wide Area Location and Routing. Technical Report UCB/CSD-01-1141, University of California at Berkeley, 2001.
|