(3.227.235.183) 您好!臺灣時間:2021/04/18 11:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范育成
研究生(外文):Yu-Cheng Fan
論文名稱:數位浮水印技術用於積體電路矽智產與多媒體系統之設計與實現
論文名稱(外文):Design and Implementation of Digital Watermarking for SOC IP Identification, Multimedia Protection and Authentication
指導教授:曹恆偉曹恆偉引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:108
中文關鍵詞:系統晶片矽智產數位浮水印脆弱型浮水印數位智產保護可視型浮水印矽智產浮水印
外文關鍵詞:SOCIPDigital WatermarkingFragile WatermarkingDRMVisible WatermarkingIP Watermarking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
數位浮水印與數位智產管理的設計是本論文的研究主題。我們以三個主要的數位浮水印-積體電路矽智產浮水印,可視型小波浮水印,與脆弱型小波浮水印為研究實例,針對各種浮水印的特性,分別提出新的演算法、硬體架構或電路,並提出數位智產管理平台的建立。
在積體電路矽智產浮水印上,我們提出以測試電路為基礎的積體電路矽智產認證技術,我們將預先設計好的浮水印,嵌入積體電路矽智產的測試電路之中,並建立積體電路矽智產的管理平台,當客戶使用矽智產時,透過浮水印認證技術,即可獲得設計者或矽智產提供者所授與的積體電路。在這個方法中,結合了矽智產浮水印認證技術與密碼技術,並藉由積體電路矽智產管理平台的協助,達到積體電路矽智產保護的目的,這是一個創新且實用的設計方法。
在可視型小波浮水印上,我們提出以數位小波轉換為基礎的可視型浮水印,我們根據小波轉換的特性,將小波影像分成亮度特性與空間特性做處理,並將人類視覺系統考慮於浮水印的設計中,得到良好的視覺效果。接著,我們採用係數近似、數值化簡技術及硬體電路共享技術以降低電路架構複雜度,整個電路採用聯華電子0.18um的製程技術加以實現,經由實驗證明後,我們提出的方法確實可大量簡少硬體複雜度,並提供高品質的可視型浮水印。
在脆弱型小波浮水印上,我們提出以數位小波轉換為基礎的脆弱型浮水印,我們依據小波係數的分佈,將係數加以重新編碼後,設計出具有影像特徵的脆弱型浮水印,並將浮水印嵌入小波係數之中,當影像被篡改時,脆弱型浮水印可偵測出影像的篡改,並找出篡改的位置,由於所提出的脆弱型浮水印,具有原始影像的特徵,利用倒傳式類神經網路,可分析出影像受到何種篡改方式。經由實驗證明後,所提出的脆弱型浮水印有很好的視覺品質,並可偵測大部份的影像篡改,這個方法確實具新穎性及實用性。
數位浮水印技術及數位智產管理平台是目前很重要的研究領域,本論文提出的三種數位浮水印技術及相關的數位智產管理平台,成功解決了許多現今的一些重要問題,對於日益重要的智產保護與管理領域,提供了可行的方法。
In this dissertation, the algorithm and architecture design and implementation of digital watermarking coding system are presented. The research focuses on three watermarking system: SoC IP watermarking for IP identification and digital right management framework, wavelet-based visible watermarking and fragile watermarking.
Advances in semiconductor processing technology have led to rapid increases in integrated circuit (IC) design complexity. Intellectual property (IP)-based design methodologies have become a major concern in IC industries. Design reuse leads to the development of intellectual property identification techniques. A novel testing-based watermarking scheme for intellectual property (IP) identification is proposed. The principles are established for development of new watermarking IP identification procedures that depend on current IP-based design flow. Then, the digital right management framework for IP release is developed according IP identification technology. IP vendor or designer can protect and manage IPs adopting this method. The proposed scheme provides IP identification and digital right management complete solution.
Visible watermarking schemes are important intellectual property right protection mechanisms for digital images and videos that have to be released for certain purposes but illegal reproductions of them are prohibited. Efficient hardware architecture of wavelet-based adaptive visible watermarking is presented that adopts approximate technique, numerical reduction and resource sharing technique to reduce hardware complexity. Luminance characteristics are calculated to estimating the effect of background luminance. Local spatial characteristics are analyzed to characterize the activity level of pixels. The watermark image is embedding by modifying the coefficients of the host image according to scaling factor. According to experimental results, our method reduces the hardware complexity and holds high image quality. The experimental results have proven the proposed architecture is indeed hardware-effective.
A fragile watermark is useful in image authentication applications. A novel wavelet-based fragile watermarking scheme is designed according to the wavelet coefficients of the host image. This fragile watermark records the characteristics of the original image and is extracted without original image. After the fragile watermark is extracted, the approximate host image can be reconstructed. Then a modified image can be detected according to the fragile watermark and the reconstructed image. Afterward, an artificial neural network is used to analyze the tampering of the host image, locate where the tampering has occurred, and identify what kind of alteration has occurred. The fragile watermark provides sufficient authentication evidence. This method is novel and efficient.
In this dissertation, a testing-based IP watermarking, wavelet-based visible watermarking and fragile watermarking are designed and implemented. Solving remaining open problems related to digital watermarking and DRM developments are future research direction of the author.
誌謝 i
摘要 iv
Title v
Contents vi
List of Figures ix
List of Tables xii
Abstract xiii
1 Introduction 1
1.1 Digital Watermarking 1
1.2 Research Motivation 3
1.3 Purposes of This Work 4
1.4 Dissertation Organization 5
2 Testing-Based Watermarking Techniques for Intellectual Property Identification and Digital Right Management in SOC Design 7
2.1 Introduction 8
2.2 IP Based Design Flow with Watermarking 11
2.2.1 Watermark Design 11
2.2.2 Watermark Generating Circuit Design 12
2.2.3 Test Circuit (TC) 14
2.2.4 Combining Test Circuit with Watermark Generating Circuit 14
2.2.5 Integrating Soft IP, Test Circuit and Watermark Generating Circuit 16
2.2.6 Cryptography 17
2.3 Design for Testing Strategies 19
2.3.1 Direct Access Test Scheme 19
2.3.2 Scan Based Test Scheme 21
2.3.3 Scan Based Test Scheme 23
2.4 Experimental results 25
2.4.1 Hardware overhead 25
2.4.2 Processing time (P.T.) 28
2.4.3 Fault coverage 29
2.4.4 Watermarking in various design levels 29
2.4.5 Imperceptibility 29
2.4.6 Identification proof after chips have been package 31
2.5 Digital Right Management for Software IP 31
2.6 IP Watermarking Comparison and Discussion 31
2.6.1 IP Identification versus IP Protection 31
2.6.1.1 Constraint-Based IP Watermarking 32
2.6.1.2 Finite State Machine Based IP Watermarking 32
2.6.1.3 Digital Signal Processing IP Watermarking 33
2.6.1.4 Joint Test Action Group (JTAG) 34
2.6.2 Discussion 35
2.7 Conclusion 35
3 Hardware-Efficient Architecture Design of Wavelet-Based Adaptive Visible Watermarking 37
3.1 Visible Watermarking Overview 37
3.2 Human Visual System 39
3.3 Wavelet-Based Adaptive Visible Watermarking 40
3.4 Hardware-Efficient Architecture Design 44
3.5 Implementation 47
3.6 Experimental Results 49
3.7 Conclusion 54
4 Wavelet-based Fragile Watermarking Scheme for Image Authentication 56
4.1 Introduction 56
4.2 Fragile Watermark Embedding 58
4.3 Fragile Watermark Extraction and Analysis 62
4.4 Artificial Neural Network Model 64
4.5 Experimental Results and Discussion 69
4.5.1 Experimental Results 69
4.5.2 Discussion 74
4.6 Conclusions 75
5 Digital Watermarking for Digital Rights Management 76
5.1 Digital Right Management for Digital Content 76
5.2 Digital Right Management Solutions 77
5.2.1 Digimarc MediaBridge System 77
5.2.2 Windows Media Rights Manager (WMRM) 79
5.2.3 Inter Trust Right Solution 82
5.2.4 Secure Digital Music Initiative (SDMI) 83
5.3 Digital Watermarking in Digital Right Management System 86
5.4 Conclusions 87
6 Conclusions 89
6.1 Principal Contribution 89
6.2 Future Direction 90
6.2.1 Multiple Watermarking Techniques and Identity Machines 90
6.2.2 Standardization of Watermarking Techniques 90
6.2.3 Digital Right Management 91
6.2.4 Digital Watermarking for Other Applications 91
Bibliography 92
Curriculum Vitae 103
Publication List 106
[1]W. J. Mitchell, “When is Seeing Believing?” Scientific American, pp. 68-73, Feb 1994.
[2]B. B. Zhu, M. D. Swanson, A. H. Tewfik, “When seeing isn''t believing,” IEEE Signal Processing Magazine, vol 21, no 2, pp. 40-49, March 2004.
[3]A. Z. Tirkel, G. A. Rankin, R. V. Schyndel, W. J. Ho, N. R. A. Mee, and C. F. Osborne, “Electronic Watermark,” Proceedings of Digital Image Computing, Technology and Applications, Sydney, Australia, pp. 666-672, Dec. 1993.
[4]I. J. Cox, M. L. Miller, J. A. Bloom, Mathew Miller, Digital Watermarking: Principles & Practice, Morgan Kaufmann Publishers, 2002.
[5]C. S. Lu, Multimedia Security: Steganography and Digital Watermarking Techniques for Protection of Intellectual Property, IDEA Group Publishers, June 2004.
[6]C. H. Huang, and J. L. Wu, “Attacking visible watermarking schemes,” IEEE Transactions on Multimedia, vol.: 6, no. 1, pp: 16-30, Feb. 2004.
[7]I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol.: 6, pp. 1673-1687, Dec. 1997.
[8]Y. P. Wang, M. J. Chen, and P. Y. Cheng, “Robust image watermark with wavelet transform and spread spectrum techniques,” The Proc. Asilomar Conference on Signals, Systems and Computers, vol.: 2, pp. 1846-1850, Nov. 2000.
[9]Q. Sun, and S. F. Chang, “Semi-fragile image authentication using generic wavelet domain features and ECC,” The Proc. Int. Conference on Image Processing, vol.: 2, pp: 901-904, 2002.
[10]Y. L. Ho, and H. C. Wang, “An audio watermarking algorithm based on significant component modulation” The IEEE Int. Conference on Consumer Electronics, pp. 212-213, 2003.
[11]T. H. Tsai, and C. Y. Wu, “An implementation of configurable digital watermarking system in MPEG video encoder” The IEEE Int. Conference on Consumer Electronics, pp. 216-217, 2003.
[12]A. B. Kahng, D. Kirovski, S. Mantik, M. Potkonjak, and J. L. Wong, “Copy detection for intellectual property protection of VLSI designs”, The IEEE/ACM Int. Conference on Computer-Aided Design, pp. 600-604, 1999.
[13]A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking techniques for intellectual property protection,” The IEEE Design Automation Conference, pp. 776-781, 1998.
[14]A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Robust IP watermarking methodologies for physical design,” The IEEE Design Automation Conference, pp. 782-787, 1998.
[15]J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Fingerprinting digital circuits on programmable hardware,” The Int. Workshop on Information Hiding, pp. 16-31, 1998.
[16]D. Kirovski, and M. Potkonjak, “Local watermarks: methodology and application to behavioral synthesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.: 22, pp. 1277-1283, Sept. 2003.
[17]L. Oliveira, “Techniques for the creation of digital watermarks in sequential circuit designs,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.: 20, pp. 1101-1117, Sept. 2001.
[18]Torunoglu, and E. Charbon, “Watermarking-based copyright protection of sequential functions,” The IEEE Custom Integrated Circuits Conference, pp. 35–38, 1999.
[19]R. Chapman, T. S. Durrani, “IP protection of DSP algorithms for system on chip implementation,” IEEE Trans. on Signal Processing, vol.: 48, pp. 854–861, March 2000.
[20]R. Chapman, T. S. Durrani, and A. P. Tarbert, “Watermarking DSP algorithms for system on chip implementation,” The IEEE International Conference on Electronics, Circuits and Systems, pp. 377-380, 1999.
[21]Y. C. Fan, and H. W. Tsao, “Watermarking for intellectual property protection,” Electronics Letters, vol. 39, pp. 1316-1318, Sept. 2003.
[22]G. Qu, and M. Potkonjak, Intellectual Property Protection in VLSI Designs: Theory and Practice, Kluwer Academic Publishers, 2003.
[23]H. Chang, Surviving the SOC revolution: a guide to platform-based design, Kluwer Academic Publishers, 1999.
[24]G. Martin, and H. Chang, Winning the SoC revolution: experiences in real design, Kluwer Academic Publishers, 2003.
[25]Architecture Document Version 1.0, Virtual Socket Interface Alliance, 1997.
[26]N. Narayan, R. D. Newbould, J. D. Carothers, J. J. Rodriguez, and W. T. Holman, “IP protection for VLSI designs via watermarking of routes,” The IEEE Int. Conference on ASIC/SOC, pp. 406-410, Sep. 2001,
[27]D. Kirovski, and M. Potkonjak, “Localized watermarking: methodology and application to template mapping,” The IEEE Int. Conference on Acoustics, Speech, and Signal Processing, no. 6, pp.3235-3238, June 2000.
[28]A. E. Caldwell, H. J. Choi, A. B. Kahng, S. Mantik, M. Potkonjak, G. Qu, and J. L. Wong, “Effective iterative techniques for fingerprinting design IP,” The Design Automation Conference, pp. 843-848, June 1999.
[29]E. Charbon, “Hierarchical watermarking in IC design,” The IEEE Custom Integrated Circuits Conference, pp. 295-298, May 1998.
[30]A. Crouch, Design for Test for Digital IC''s and Embedded Core Systems, Prentice Hall Publishers, 1999.
[31]M. L. Bushnell, and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2000.
[32]Y. C. Fan, and H. W. Tsao, “Watermarking based IP core protection,” The IEEE Int. Symposium on Circuits and Systems, pp. 181–184, May 2003.
[33]H. W. Tsao, and Y. C. Fan, “Method and Device for IC Identification,” R.O.C. Patent I226001, Jan. 1, 2005.
[34]H. W. Tsao, and Y. C. Fan “Method and Device for IC Identification,” United States Patent 6883151, April 19, 2005.
[35]Y. C. Fan, H. Y. Yang, and H. W. Tsao, “Direct access test scheme for IP core protection,” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, AP-ASIC 2004, pp: 262-265, Aug. 2004.
[36]Y. C. Fan, and H. W. Tsao, “Boundary scan test scheme for IP core identification via watermarking,” IEICE Transactions on Information and Systems, July 2005.
[37]Verilog Hardware description Language Reference Manual, International Open Verilog, 1991.
[38]HDL Compiler for Verilog Reference Manual, Synopsys, 2000.
[39]V. Immaneni, and S. Raman, “Direct access test scheme-design of block and core cells for embedded ASICs,” The Int. Test Conference, pp. 488-492, Sep. 1990.
[40]J. Aerts, and E. J. Marinissen, “Scan chain design for test time reduction in core-based ICs,” The Int. Test Conference, pp. 448–457, Oct. 1998.
[41]B. T. Murray, and J. P. Hayes, “Testing ICs: getting to the core of the problem,” IEEE Computer, no. 29, pp. 32–38, Nov. 1996.
[42]R. D. Newbould, D. L. Irby, J. D. Carothers, J. J. Rodriguez, and W. T. Holman, “Watermarking ICs for IP protection,” Electronics Letters, 2002, 38, no.6, pp. 272 – 274.
[43]D. L. Irby, R. D. Newbould, J. D. Carothers, J. J. Rodriguez, and W. T. Holman, “Low level watermarking of VLSI designs for intellectual property protection,” The IEEE Int. Conference on ASIC/SOC, pp: 136 – 140, Sep. 2000.
[44]D. Kirovski, Y. Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual property protection by watermarking combinational logic synthesis solutions,” Int. Conference on Computer Aided Design, pp 194 – 198, Nov. 1998.
[45]I. Hong and M. Potkonjak, “Behavioral synthesis techniques for intellectual property protection,” The Design Automation Conference, June 1999, pp 849 – 854.
[46]L. Whetsel, “An IEEE 1149.1 based test access architecture for ICs with embedded cores,” The Int. Test Conference, pp. 69–78, 1997.
[47]A. B. Kahng, et al., “Constraint-based watermarking techniques for design IP protection,” IEEE Trans. Computer-Aided Design Integrated Circuits Systems, vol.: 20, pp. 776–781, 1236–1252, Oct. 2001.
[48]G. Wolfe, J. L. Wong, and M. Potkonjak, “Watermarking graph partitioning solutions,” IEEE Trans. Computer-Aided Design Integrated Circuits Systems, vol.: 21, pp. 1196–1204, Oct. 2002.
[49]A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “IP watermarking techniques: survey and comparison,” The IEEE Int. Workshop on System-on-Chip for Real-Time Applications, pp. 60–65, 2003.
[50]Y. C. Fan, and H. W. Tsao, “Hardware-Efficient Architecture Design of Wavelet-Based Adaptive Visible Watermarking,” IEEE International Symposium on Consumer Electronics, ISCE 2005, June 14-16,2005, Macau SAR, China.
[51]D. C. Lou, J. L. Liu, and M. C. Chang, “Digital watermarking using multi-resolution wavelet transform,” The IEEE 37th Annual 2003 International Carnahan Conference on Security Technology, pp. 370-377, Oct. 2003.
[52]Y. S. Seo, S. Joo, and H. Y. Jung, “An Efficient Quantization Watermarking on the Lowest Wavelet Sub-band,” IEICE Trans. Fundamentals, vol.: E86-A, no. 8, pp.2053-2055, Aug. 2003.
[53]Y. C. Fan, and H. W. Tsao, “A Dual Pyramid Watermarking for JPEG-2000,” IEEE 19th International Conference on advanced information Networking and Applications, AINA 2005, March 28-30, 2005.
[54]S. P. Mohanty, N. Ranganathan, and R. K. Namballa, “VLSI implementation of visible watermarking for secure digital still camera design,” 17th International Conference on VLSI Design, pp: 1063-1068, Jan. 2004.
[55]S. P. Mohanty, N. Ranganathan, and K. Balakrishnan, “Design of a low power image watermarking encoder using dual voltage and frequency,” 18th International Conference on VLSI Design, pp: 153 – 158, Jan. 2005.
[56]Y. Hu, and S. Kwong, “Wavelet domain adaptive visible watermarking,” Electronics Letters, vol.: 37, no. 20, pp: 1219 – 1220, Sept. 2001.
[57]P. Seder, “Image Watermarking,” IEE Seminar on Protecting Your Intellectual Property: Security, Encryption and Anti-Copy Technologies, pp: 4/1 – 4/8, March 1999.
[58]M. S. Kankanhalli, Rajmohan, and K. R. Ramakrishnan, “Adaptive visible watermarking of images,” 1999. IEEE International Conference on Multimedia Computing and Systems, vol.: 1, pp: 568-573, June 1999.
[59]S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT domain visible watermarking technique for images,” 2000 IEEE International Conference on Multimedia and Expo, ICME 2000, vol.: 2, pp: 1029-1032, July 2000.
[60]S. P. Mohanty, and K. R. Ramakrishnan, “A Dual Watermarking Technique for Images,” ACM International Multimedia Conference, Orlando, Florida, Nov. 5, 1999.
[61]P. M. Chen, “A visible watermarking mechanism using a statistic approach,” The Fifth International Conference on Signal Processing Proceedings, WCCC-ICSP 2000, vol.: 2, pp: 910- 913, Aug. 2000.
[62]G. W. Braudaway, K. A. Magerlein, and F. C. Mintzer, “Protecting publicly-available images with a visible image watermark,” The SPIE International Conference on Electronic Imaging, vol.: 2659, pp. 126-133, Feb. 1996.
[63]Y. Hu, and S. Kwong, “An image fusion based visible watermarking algorithm,” The 2003 IEEE International Symposium on Circuits and Systems, ISCAS 2003, vol.: 3, pp: III-794 - III-797, May 2003
[64]T. H. Tsai and C. Y. Lu, “A system level design for embedded watermark technique using DSC system,” The IEEE Int. Workshop on Intelligent Signal Processing and Comm. System, 2001.
[65]A. Garimella, M. V. V. Satyanarayan, R. S. Kumar, P. S. Murugesh, and U. C. Niranjan, “VLSI impementation of online digital watermarking techniques with difference encoding for the 8-bit gray scale images,” The Int. Conf. on VLSI Design, pp.792 –796, 2003.
[66]W. F. Schreiber, Fundamentals of Electronic Imaging Systems, Springer-Verlag Publishers, Berlin, 1991.
[67]W. K. Pratt, Digital Image Processing, Wiley-Interscience Publishers, 2001.
[68]S. Hecht, “The visual discrimination of intensity and the Weber-Fechner law,” Journal of General Physiology, July 1924.
[69]S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Transactions on Image Processing, vol.: 9, no. 9, pp: 1522-1531, Sept. 2000.
[70]S. Decker, “Engineering considerations in commercial watermarking,” IEEE Communications Magazine, vol.: 39, no. 8, pp: 128-133, Aug. 2001.
[71]Y. C. Fan, W. L. Mao, and H. W. Tsao, “An artificial neural network-based scheme for fragile watermarking,” IEEE International Conference on Consumer Electronics, ICCE 2003, pp. 210 - 211, June 17-19, 2003, Los Angeles, California, U.S.A.
[72]Y. C. Fan, and H. W. Tsao, “A data backup embedding scheme for fragile watermarking,” IEEE International Conference on Informatics Cybernetics and Systems, ICICS 2003, pp: 1103-1108, Dec. 14-16, 2003.
[73]F. Alturki, and R. Mersereau, “Secure fragile digital watermarking technique for image authentication,” IEEE Int. Conf. Image Processing, vol.: 3, pp: 1031-1034, 2001.
[74]J. Fridrich, M. Goljan, and A. C. Baldoza, “New fragile authentication watermark for images,” IEEE Int. Conf. Image Processing, vol.1, pp: 446-449, 2000.
[75]H. Wang, C. He, and K. Ding, “Quadtrees-based image authentication technique,” IEICE Trans. Fundamental, vol. E87-A, No.4 April 2004.
[76]K. Ding, C. He, L. G. Jiang, and H. X. Wang, “A novel fragile watermark applying in verification,” Int. Conf. Neural Networks and Signal Processing, pp: 1501-1504, Dec. 2003.
[77]S. Haykin, Neural Network: A Comprehensive Foundation, Prentice Hall Press, 2nd, 1999.
[78]W. N. Lie, T. L. Hsu, and G. S. Lin, “Verification of image content integrity by using dual watermarking on wavelets domain,” Int. Conf. Image Processing, pp: 487-490, Sept. 2003.
[79]H. Zhong, F. Liu, and L. C. Jiao, “A new fragile watermarking technique for image authentication,” Int. Conf. Signal Processing, pp:792-795, Aug. 2002.
[80]H. Inoue, A. Miyazaki, and T. Katsura, “Wavelet-based watermarking for tamper proofing of still images,” Int. Conf. Image Processing, pp: 88-91, Sept. 2000.
[81]D. Kundur, and D. Hatzinakos, “Digital watermarking for telltale tamper proofing and authentication,” Proceedings of the IEEE, vol.: 87, Issue: 7, pp: 1167-1180, July 1999.
[82]Stirmark Home Page, http://www.cl.cam.ac.uk/~fapp2/watermarking/stirmark/
[83]Definition of DRM, http://www.microsoft.com/windows/windowsmedia/wm7/drm/ definition.asp
[84]G. W. Treese, and L. C. Stewart, Designing Systems for Internet Commerce, Addison Wesley Publishers, 1998.
[85]Digimarc Corporation: The Leading Digital Watermarking Developer, http://www.digimarc.com
[86]Digimarc Media Commerce Home page, http://www.digimarc.com/imaging/default.asp
[87]T. Page, “Rights management: digital watermarking as a form of copyright protection,” Computer Law & Security Report, pp. 390-392, 1998.
[88]Licensing Digimarc Technology, http://www.digimarc.com/licensing/index.htm
[89]Windows Media DRM, http://www.microsoft.com/windows/windowsmedia/drm.asp
[90]Architecture of Windows Media Rights Manager, http://www.microsoft.com/windows/windowsmedia/wm7/drm/architecture.asp
[91]J. Cohen, A General Overview of Windows Media DRM 10 Device Technologies, Microsoft Corporation, Sep. 2004.
[92]M. Abadi, N. Glew, B. Horne, and B. Pinkas, “Certified email with a light on-line trusted third party: design and implementation,” The Eleventh International World Wide Web Conference, pp.387-395, 2002.
[93]InterTrust Technologies, http://www.intertrust.com
[94]InterTrust Technologies – About DRM, http://www.intertrust.com/main/overview/drm.html
[95]P. Golle, S. Jarecki, and I. Mironov, “Message-aware cryptographic primitives,” Proceedings of Financial Cryptography, pp.11-16, 2002.
[96]S. Haber, and B. Pinkas, “Securely combing public-key crypto-systems,” The Eighth ACM Conference on Computer and Communications Security, Philadelphia, PA, USA, pp. 215-224, 2001.
[97]SDMI Portable Device Specification, SDMI Foundation, July 8, 1999.
[98]O. Benedens, “Geometry-based watermarking of 3D models,” IEEE Computer Graphics & Applications, vol. 19, pp.46-55, 1999.
[99]S. H. Kwok, and C. C. Yang, “Watermarking in online media e-business,” The International Conference on Information Technology: Coding and Computing, ITCC, pp.158-163, 2002.
[100]S. Craver, and J. P. Stern, “Lessons learned from SDMI,” IEEE Fourth Workshop on Multimedia Signal Processing, pp.213-218, 2001.
[101]J. S. Pan, H. C. Huang, L. C. Jain, and L. C. Jain, Intelligent Watermarking Techniques, World Scientific Publishers, April 1, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔