跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴俊延
研究生(外文):Chun-Yen Lai
論文名稱:超音波穴蝕效應於基因傳遞效率之研究
論文名稱(外文):A Study on Acoustic Cavitation Assisted Gene Delivery
指導教授:李百祺
指導教授(外文):Pai-Chi Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:75
中文關鍵詞:超音波微氣泡穴蝕效應基因傳遞慣性穴蝕劑量
外文關鍵詞:ultrasoundmicrobubblescavitationtransfectiongene deliveryinertial cavitation dose
相關次數:
  • 被引用被引用:16
  • 點閱點閱:633
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
基因治療是目前極具潛力的治療模式,其定義為”修復可能致病基因的技術”。基因治療的關鍵為基因傳遞(又稱為基因轉殖),可藉由許多方法達成,本研究使用之方法為利用超音波與超音波對比劑誘發穴蝕效應,以達成基因傳遞。穴蝕效應為微氣泡於聲場中受到壓力變化而脹縮與破裂的過程,由超音波產生的穴蝕效應在非熱治療領域上之優點如下:由於超音波具有非侵入性及深處聚焦之能力,因此應用於治療較安全可靠;且其亦為發展完善的造影方法,故可將治療與影像結合。雖然以超音波穴蝕效應進行基因傳遞已有許多成功的案例,且其機制目前認為是穴蝕效應導致細胞膜通透性增加,但對於穴蝕效應與基因傳遞間的量化關係仍然不清楚,故本研究的目的即是量化基因傳遞效率/細胞存活率與穴蝕效應之關係。本研究使用1MHz超音波探頭與商用對比劑Levovist®來誘發穴蝕效應,並以HeLa(子宮頸癌)細胞與標訂FITC染劑的DNA進行基因傳遞實驗。研究中使用超音波發射聲壓、對比劑濃度、超音波發射週數作為改變的參數,先有效地誘發與偵測穴蝕效應,並以慣性穴蝕劑量定量微氣泡破裂的程度,再進行基因傳遞實驗,於螢光顯微鏡下計數基因傳遞率與細胞存活率,最後以基因傳遞結果為縱軸,慣性穴蝕劑量為橫軸,將兩者的間之量化關係畫出,並比較不同超音波參數的結果之相關性。實驗結果發現,穴蝕效應(微氣泡破裂)的趨勢會隨發射聲壓增強、微氣泡濃度提高、發射週數增加而明顯升高,表示本研究已可有效地誘發與偵測穴蝕效應。基因傳遞實驗方面,單一變因下的基因傳遞率/細胞存活率對於慣性穴蝕劑量具高度相關性。若結合由不同超音波參數得到的基因傳遞率/細胞存活率對於慣性穴蝕量圖,其相關係數R2亦達0.95與0.84,代表基因傳遞結果與慣性穴蝕劑量密切相關。此結果表示同一架構下不論改變的超音波參數為何,穴蝕效應與基因傳遞結果間存在一固定的函數關係,即有可能運用穴蝕效應的實驗結果來預測基因傳遞效率與細胞存活率。
Gene therapy is a promising therapeutic technique, and it is defined as correcting defective genes responsible for disease development. The key of gene therapy is gene delivery (also known as transfection). In this research, ultrasound and ultrasound contrast agents are used to induce cavitation, and gene delivery is assisted with cavitation effect. Cavitation is the process of microbubble formation, resonance, and destruction. When microbubbles experience time-varying acoustic field, cavitation may occur. Cavitation effects induced by ultrasound have been found beneficial in the non-thermal treatment, and the advantages of ultrasound are non-invasiveness, focusing and real-time imaging capacities. Although quantitative success of acoustic cavitation assisted gene delivery has been reported in the literature, the relations between gene delivery rate and cavitation effect are still unknown. In this research, methods for effective induction of acoustic cavitation are first established. Then, the quantitatively relations of gene delivery and cavitation dose are analyzed. A 1MHz ultrasound transducer and the commercial ultrasound contrast agent Levovist® are used for cavitation induction. HeLa cells and FITC labeled short sequence DNA are used in the gene delivery experiments. The parameters under investigation are acoustic pressure, microbubble concentration and ultrasound pulse length. The effect of cavitation (microbubble destruction) is quantitatively analyzed using the inertial cavitation dose (ICD) method. After gene delivery experiments, the gene delivery rate and cell viability are calculated under the fluorescent microscope. The curves of gene delivery rate (and cell viability) versus ICD are plotted, and the relations between gene delivery rate/viability and cavitation are examined. The results show that ICD increases with the acoustic pressure, microbubble concentration and pulse length. In the gene delivery experiments, there are high correlations between gene delivery rate (or cell viability) and ICD. Combining the results of gene delivery rate (or cell viability rate) versus ICD of the three parameters, high correlations also exist between gene delivery results and ICD, indicating that gene delivery results may be potentially predicted using cavitation measurements before gene delivery experiments.
第一章 緒論 1
1.1基因治療 1
1.2超音波治療之演進 4
1.3穴蝕效應 6
1.4超音波於基因傳遞之應用 8
1.5研究動機與目標 10
1.6論文架構 12

第二章 實驗材料與方法 13
2.1穴蝕效應實驗—誘發與偵測 13
2.1.1超音波對比劑 13
2.1.2實驗系統架構 15
2.1.3穴蝕效應之誘發 17
2.1.3.1發射聲場強度 17
2.1.3.2微氣泡濃度 17
2.1.3.3發射週數 18
2.1.4穴蝕效應之偵測 19
2.1.4.1 B-mode影像觀察法 19
2.1.4.2穴蝕效應之定量表示—Inertial Cavitation Dose 19
2.2基因傳遞實驗 22
2.2.1細胞株 22
2.2.2 DNA 23
2.2.3系統架構與實驗流程 24
2.2.3.1基因傳遞率量測法 24
2.2.3.2細胞存活率量測法 24
2.2.4實驗參數 26
2.2.5基因傳遞率/細胞存活率與穴蝕效應關聯之建立 28

第三章 實驗結果 29
3.1穴蝕效應實驗結果 29
3.1.1 B-mode影像觀察法 29
3.1.2發射聲壓 vs. 穴蝕效應 30
3.1.3微氣泡濃度vs. 穴蝕效應 34
3.1.4發射週數 vs. 穴蝕效應 38
3.2基因傳遞實驗結果 40
3.2.1螢光顯微鏡與共軛焦顯微鏡觀察結果 40
3.2.2發射聲壓 vs. 基因傳遞率與細胞存活率 43
3.2.3微氣泡濃度 vs. 基因傳遞率與細胞存活率 46
3.2.4發射週數 vs. 基因傳遞率與細胞存活率 49
3.3穴蝕效應 vs. 基因傳遞率與細胞存活率 50

第四章 分析與討論 52
4.1穴蝕效應之測與定量 52
4.2基因傳遞實驗結果分析 57
4.3穴蝕效應與基因傳遞率、細胞存活率之關聯 59
4.4本研究之應用 61

第五章 結論與未來工作 62

第六章 參考文獻 67
[1]Mountain A., “Gene therapy: the first decade,” Trends Biotechnol., Vol. 18, No. 3, pp. 119-128, 2000.
[2]Gabi U. Dachs, Graeme J. Dougherty, Ian J. Stratford and Dai J. Chaplin, “Targeting gene therapy to cancer: a review,” Oncology Research, Vol. 9, pp. 313-325, 1997.
[3]Anderson WF., “Human gene therapy,” Science, Vol. 256, No. 5058, pp. 808-813, 1992.
[4]Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and Peter Walter, Molecular Biology of the Cell, Fourth Edition, Taylor & Francis Group Ltd.
[5]Tom Strachan and Andrew P. Read, Human Molecular Genetics, BIOS Scientific Publishers, Ltd.
[6]Nielsen LL., Maneval DC., ”P53 tumor suppressor gene therapy for cancer,” Cancer Gene Therapy, Vol. 5, No. 1, pp. 52-63, 1998.
[7]Fletcher JC., Anderson WF., ”Germ-line gene therapy: a new stage of debate,” Law Med Health Care, Vol. 20, No. 1-2, pp. 26-39, 1992.
[8]Human Genome Project Information Website
http://www.ornl.gov/TechResources/Human_Genome/home.html
[9]Todd K. Rosengart, Leonard Y. Lee, Shailen R. Patel, Timothy A. Sanborn, Manish Parikh, Geoffrey W. Bergman, Rory Hachamovitch, Massimiliano Szulc, Paul D. Kligfield, Peter M. Okin, Rebecca T. Hahn, Richard B. Devereux, Martin R. Post, Neil R. Hackett, Taliba Foster, Tina M. Grasso, Martin L. Lesser, O. Wayne Isom and Ronald G. Crystal, “Angiogenesis gene therapy (phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease),” Circulation, Vol. 100, pp. 468-474, 1999.
[10]J. N. Lozier and K. M. Brinkhous, “Gene therapy and the hemophilias,” The Journal of the American Medical Association, Vol. 271, No. 1, 1994.
[11]Paul D. Robbins and Steven C. Ghivizzani, “Viral vectors for gene therapy,” Pharmacol. Ther., Vol. 80, No. 1, pp. 35-47, 1998.
[12] Schatzlein AG, “Non-viral vectors in cancer gene therapy: principles and progress,” Anti-Cancer Drugs, Vol. 12, No. 4, pp. 275-304, 2001.
[13]Fubao Wang, Deepa K. Patel, Joseph M. Antonello, Michael W. Washabaugh, David C. Kaslow, John W. Shiver and Narendra Chirmule, “Development of an adenovirus-shedding assay for the detection of adenoviral vector-based vaccine and gene therapy products in clinical specimens,” Human Gene Therapy, Vol. 14, No. 1, pp. 25-36, 2003.
[14]Patricia M. Joseph, Brian P. O''Sullivan, Allen Lapey, Henry Dorkin, Joseph Oren, Rosemary Balfour, Michael A. Perricone, Mireille Rosenberg, Samuel C. Wadsworth, Alan E. Smith, Judith A. St. George and David P. Meeker, “Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. methods, safety, and clinical implications,” Human Gene Therapy, Vol. 12, No. 11, pp. 1369-1382, 2001.
[15]Hiroyuki Kubo, Thomas A. Gardner, Yoshitaka Wada, Kenneth S. Koeneman, Akinobu Gotoh, Ling Yang, Chinghai Kao, So Dug Lim, Mahul B. Amin, Hua Yang, Margaret E. Black, Shigeji Matsubara, Masayuki Nakagawa, Jay Y. Gillenwater, Haiyen E. Zhau and Leland W.K. Chung, “Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer,” Human Gene Therapy, Vol. 14, No. 3, pp. 227-241, 2003.
[16]Eliot Marshall, “Gene therapy death prompts review of adenovirus vector,” Science, Vol. 286, Issue 5448, pp. 2244-2245, 1999.
[17]Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K and Isner JM, “Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia,” Circulation, Vol. 98, No. 25, pp. 2800-2804, 1998.
[18]Yo-ichi Yamashita, Mitsuo Shimada, Hirofumi Hasegawa, Ryosuke Minagawa, Tatsuya Rikimaru, Takayuki Hamatsu, Shinji Tanaka, Ken Shirabe, Jun-ichi Miyazaki and Keizo Sugimachi, “Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model,” Cancer Researc., Vol. 61, pp. 1005-1012, 2001.
[19]B. R. Davis, J. Yannariello-Brown, N. L. Prokopishyn, Z. Luo, M. R. Smith, J. Wang, N. D. V. Carsrud and D. B. Brown, “Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells,” Blood, Vol. 95, No. 2, pp. 437-444, 2000.
[20]Rakhmilevich AL, Janssen K, Turner J, Culp J and Yang NS, “Cytokine gene therapy of cancer using gene gun technology: superior antitumor activity of interleukin-12,” Human Gene Therapy, Vol. 8, No. 11, pp. 1303-1311, 1997.
[21]Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD and Mixson AJ, ”Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice,” Human Gene Therapy, Vol. 6, No. 4, pp. 395-405, 1995.
[22]Pengnian Lin, Jake A. Buxton, Ann Acheson, Czeslaw Radziejewski, Peter C. Maisonpierre, George D. Yancopoulos, Keith M. Channon, Laura P. Hale, Mark W. Dewhirst, Samuel E. George and Kevin G. Peters, “Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2,” Proceedings of the National Academy of Science, Vol. 95, No. 15, pp. 8829-8834, 1998.
[23]Hynynen K., “Review of ultrasound therapy,” Ultrasonics Symposium, 1997, Proceedings., Vol. 2, pp. 1305-1313, 1997.
[24]W. J. Fry, J. W. Barnard, F. J. Fry, R. F. Krumins and J. F. Brennan, “Ultrasonic lesions in the mammalian central nervous system,” Science, Vol. 122, pp. 517-518, 1955.
[25]W. J. Fry and F. J. Fry, “Fundamental neurological research and human neurosurgery using intense ultrasound,” IRE Trans. Med. Electron., Vol. ME-7, pp. 166-181, 1960.
[26]G. R. ter Haar, “Ultrasound focal beam surgery,” Ultrasound in Med. & Biol., Vol. 21, pp. 1089-1100, 1995.
[27]Datta NR, Bose AK, Kapoor HK and Gupta S., ”Head and neck cancers: results of thermoradiotherapy versus radiotherapy,” Int J Hyperthermia, Vol. 6, No. 3, pp. 479-486, 1990.
[28]Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O and Bentzen SM., ”Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology,” Int J Hyperthermia, Vol. 12, No. 1, pp. 3-20, 1996.
[29]G. R. ter Haar, “High intensity focused ultrasound for the treatment of tumors,” Echocardiography, Vol. 18, pp. 317-322, 2001.
[30] ter Haar G, Sinnett D and Rivens I., ”High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours,” Phys Med Biol., Vol. 34, No. 11, pp. 1743-1750, 1989.
[31] Shahram Vaezy, Victor Y. Fujimoto, Cheryl Walker, Roy W. Martin, Emil Y. Chi and Lawrence A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am J Obstet Gynecol, Vol. 183, No. 1, pp. 6-11, 2000.
[32]Douglas L. Miller and Jianming Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound in Med. & Biol., Vol. 29, No. 6, pp. 887-893, 2003.
[33]Chaussy C and Thuroff S, “Results and side effects of high-intensity focused ultrasound in localized prostate cancer,” J Endourol., Vol. 15, pp. 437-440, 2001.
[34]Wu F, Chen WZ, Bai J et al, “Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound,” Ultrasound in Med. & Biol., Vol 27, pp. 1099-1106, 2001.
[35]S. Vaezy, R. Martin, P. Mourad and L. Crum, “Hemostasis using high intensity focused ultrasound,” European Journal of Ultrasound, Vol. 9, No. 11, pp. 79-87, 1999.
[36]S. Vaezy, R. Martin, U. Schmiedl, M. Caps, S. Taylor, K. Beach, S. Carter, P. Kaczkowski, M. Rice, R. Roy and L. Crum, “Liver hemostasis using high-intensity focused ultrasound,” Ultrasound in Med. & Biol., Vol. 23, No. 9, pp. 1413-1420, 1997.
[37]T. G. Leighton, The acoustic bubble, London: Academic Press, 1994.
[38]S. Umemura, K. Kawabata and K. Sasaki, ”Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: theoretical analysis of its mechanism,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 43, No. 6, pp. 1054-1062, 1996.
[39]F. R. Young, Cavitation, UK: McGraw-Hill, 1989.
[40]F. J. Fry, G. Kossoff, R. C. Eggleton and F. Dunn, “Threshold ultrasound dosages for structural changes in the mammalian brain,” J. Acoust. Soc. Am. Vol. 48, pp. 1413-1417, 1970.
[41]A. Amararene, J. B. Fowlkes, J. Song and D. L. Miller “Relationships between scattered signals from ultrasonically activated contrast agents and cell membrane damage in vitro,” 2001 IEEE Ultrasonics Symposium, pp. 1751-1754.
[42]T. Feigl, B. Volklein, H. Iro, C. Ell and T. Schneider, “Biophysical effects of high-energy pulsed ultrasound on human cells,” Ultrasound in Med. & Biol., Vol. 22, No. 9, pp. 1267-1275, 1996.
[43]B. C. Tran, J. Seo, J. B. Fowlkes and C. A. Cain, “Microbubble enhanced threshold reductions for tissue damage using high intensity ultrasound,” 2001 IEEE Ultrasosonics Symposium, pp. 1389-1392.
[44]H. Kullervo, “Review of ultrasound therapy,” 1997 IEEE Ultrasosonics Symposium, pp. 1305-1313.
[45]N. I. Vykhodtseva, K. Hynynen and C. Damianou, “The effect of pulse duration and peak intensity during focused ultrasound surgery: a theoretical and experimental study in rabbit brain in vivo,” Ultrasound in Med. & Biol., Vol. 20, No. 9, pp. 987-1000, 1994.
[46]F. J. Fry, G. Kossoff, R. C. Eggleton and F. Dunn, “Threshold ultrasound dosages for structural changes in the mammalian brain,” J. Acoust. Soc. Am., Vol. 48, No. 6, pp. 1413-1417, 1999.
[47]F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle and C. Hennige, ”Ultrasound and microbubble: their generation detection and potential utilization in tissue and organ therapy- experimental,” Ultrasound in Med. & Biol., Vol. 21, No. 9, pp. 1227-1237, 1995.
[48]N. I. Vykhodtseva, K. Hynynen and C. Damianou, “Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo,” Ultrasound in Med. & Biol., Vol. 21, No. 7, pp. 969-979, 1995.
[49]Randazzo RF, Chaussy CG, Fuchs GJ et al, “The in vitro and in vivo effects of extracorporeal shock waves on malignant cells,” Urol Res, Vol. 16, pp. 419-426, 1988.
[50]Gamarra F, Spelsberg F, Dellian M and Goetz AE, “Complete local tumor remission after therapy with extra-corporeally applied high-energy shock waves (HESW),” Int J Cancer, Vol. 55, pp. 153-156, 1993.
[51]Gamarra F, Spelsberg F, Kuhnle GE and Goetz AE, “High-energy shock waves induce blood flow reduction in tumors,” Cancer Res., Vol. 53, pp. 1590-1595, 1993.
[52]Jianming Song, Darrell Tata, Lang Li, Jeremy Taylor, Shiping Bao and Douglas L. Miller, “Combined shock-wave and immunogene therapy of mouse melanoma and renal carcinoma tumors,” Ultrasound in Med. & Biol., Vol. 28, No. 7, pp. 957-964, 2002.
[53]Gambihler S, Delius M and Ellwart JW, “Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves,” J Membrane Biol., Vol. 141, pp. 267-275,1994.
[54]Sandra Koch, Peter Pohl, Ulrich Cobet and Nikolai G. Rainov, “Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects,” Ultrasound in Med. & Biol., Vol. 26, No. 5, pp. 897-903, 2000.
[55]Greenleaf, William J.; Bolander, Mark E.; Sarkar, Gobinda; Goldring, Mary B and Greenleaf, James F., “Artificial cavitation nuclei significantly enhance acoustically induced cell transfection,” Ultrasound in Med. & Biol., Vol. 24, No. 4, pp. 587-595, 1998.
[56]Claus-Dieter Ohl and Bernhard Wolfrum, “Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation,” Biochimica et Biophysica Acta, Vol. 1624, pp. 131-138, 2003.
[57]Douglas L. Miller and Jianming Song, “Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo,” Ultrasound in Med. & Biol., Vol. 28, No. 10, pp. 1343-1348, 2002.
[58] Wen-Shiang Chen, Thomas J. Matula, Andrew A. Brayman and Lawrence A. Crum, “A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents,” J. Acoust. Soc. Am. Vol. 113, No. 1, pp. 643-651, 2003.
[59]Wen-Shiang Chen, Andrew A. Brayman, Thomas J. Matula and Lawrence A. Crum, “Inertial cavitation dose and hemolysis produced in vitro with or without Optison,” Ultrasound in Med. & Biol., Vol. 29, No. 5, pp. 725-737, 2003.
[60] Wen-Shiang Chen, Andrew A. Brayman, Thomas J. Matula, Lawrence A. Crum and Morton W. Miller, “The pulse length-dependence of inertial cavitation dose and hemolysis,” Ultrasound in Med. & Biol., Vol. 29, No. 5, pp. 739-748, 2003.
[61]James E. Chomas, Paul Dayton, John Allen, Karen Morgan and Katherine W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 48, No. 1, pp. 232-248, 2001.
[62]M.S. Plesset and T.P. Mitchell, “On the stability of the spherical shape of a vapour cavity in a liquid,” Q. Appl. Math., Vol 13, No 11, pp. 419-430, 1956.
[63]Wyber, J. A., Andrews, J. and D’Emanuele, A, “The use of sonication for the efficient delivery of plasmid DNA into cells,” Pharm. Res. Vol. 14, pp. 750-756, 1997.
[64]Miller, M. W., Miller, D. L. and Brayman, A. A, “A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective,” Ultrasound in Med. & Biol., Vol. 22, pp. 1131-1154, 1996.
[65]Peter Weiss, “Shrimps spew bubbles as hot as the sun,” Science News, Vol. 160, No. 14, p. 213, 2001.
[66]Bao, S., Thrall, B. D., Gies, R. A. and Miller, D. L, ”In vivo transfection of melanoma cells by lithotripter shock waves,” Cancer Res., Vol. 58, pp. 219-221,1998.
[67]“Standard for real-time display of thermal and mechanical indices on diagnostic ultrasound equipment 510(k),” American Institute of Ultrasound in Medicine, Laurel, MD 20707.
[68]“Revised 510(k) diagnostic ultrasound guidance for 1993,” Center for Devices and Radiological Health, Food and Drug Admin., US Depart. Health Human Services, Rockville, MD, 1993.
[69]“Use of mechanical index in place of spatial peak, pulse average intensity in determining substantial equivalence,” Center for Devices and Radiological Health, Food and Drug Admin., US Depart. Health Human Services, Rockville, MD, 1994.
[70]W. B. O’Brien, D. G. Simpson, L. A. Frizzell and J. F. Zachary, ”Superthreshold behavior and threshold estimates of ultrasound-induced lung hemorrhage in adult rat: role of beamwidth,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 48, No. 6, pp. 1695-1705, 2001.
[71]J. F. Zachary, J. M. Sempsrott, L. A. Frizzell and W. B. O’Brien, ”Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in adult mice and rat,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 48, No. 2, pp. 581-592, 2001.
[72]W. B. O’Brien, D. G. Simpson, M. H. Ho, R. J. Miller, L. A. Frizzell and J. F. Zachary, ”Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in pigs: role of age dependency,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 50, No. 2, pp. 153-169, 2003.
[73]D. Dalecki, C. H. Raeman, S. Z. Child and E. L. Carstensen, “Intestinal hemorrhage from exposure to pulsed ultrasound,” Ultrasound in Med. & Biol., Vol. 21, No. 8, pp. 1067-1072, 1995.
[74]Unger EC et al., “Gene delivery using ultrasound contrast agents,” Echocardiography, Vol. 18, pp. 355-361, 2001.
[75]Peter A. Frenkel, Shuyuan Chen, To Thai, Ralph V. Shohet and Paul A. Grayburn, “DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro,” Ultrasound in Med. & Biol., Vol 28, No. 6, pp. 817-822, 2002.
[76]Volker Oberle, Gary de Jong, Jan I. Drayer and Dick Hoekstra, “Efficient transfer of chromosome-based DNA constructs into mammalian cells,” Biochimica et Biophysica Acta, Vol. 1676, pp. 223-230, 2004.
[77]Wen-Shiang Chen, Xiaochun Lu, Yunbo Liu and Pei Zhonga, “The effect of surface agitation on ultrasound-mediated gene transfer in vitro,” J. Acoust. Soc. Am., Vol. 116, No. 4, pp. 2440-2450, 2004.
[78]Douglas L. Miller, Chunyan Dou and Jianming Song, “DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro,” Ultrasound in Med. & Biol., Vol. 29, No. 4, pp. 601-607, 2003.
[79]賴寬裕, “以穴蝕效應為主之超音波治療, 誘發與偵測,” 國立台灣大學電機工程學研究所碩士論文, 民國九十三年.
[80]Ah Young Kim, Byung Ihn Choi, Tae Kyoung Kim, Kyoung Won Kim, Jae Young Lee and Joon Koo Han, “Comparison of contrast-enhanced fundamental imaging, second-harmonic imaging, and pulse-inversion harmonic imaging,” Investigative Radiology, Vol. 36, No 10, pp. 582-588, 2001.
[81]Levovist Data Sheet, Schering AG.
[82]J. E. Chomas, P. A. Dayton, D. May, J. Allen, A. Klibanov and K. Ferrara, “Optical observation of contrast agent destruction,” Applied Physics Letters, Vol. 77, No. 7, pp. 1056-1058, 2000.
[83]Brayman A, Strickler P, Luan H, et al., “Hemolysis of 40% hematocrit, Albunex-supplemented human erythrocytes by pulsed ultrasound: Frequency, acoustic pressure and pulse length dependence,” Ultrasound in Med. & Biol., Vol. 23, No. 8, pp. 1237-1250, 1997.
[84]Kruse, D.E., Chih-Kuang Yeh and Ferrara, K.W., “A new imaging strategy utilizing wideband transient response of ultrasound contrast agents,” 2003 IEEE Ultrasonics Symposium, Vol. 1, pp. 424-428, 2003.
[85]Angelos G. Rigopoulos, Lothar Faber, Peer Ziemssen, Christodoulos I. Stefanadis, Pavlos K. Toutouzas and Hubert Seggewiss, “Echocardiography-guided percutaneous septal ablation in patients with hypertrophic obstructive cardiomyopathy: one year follow-up,” Hellenic J Cardiol, 44, pp. 171-179, 2003.
[86]Michel Versluis, Barbara Schmitz, Anna von der Heydt and Detlef Lohse “How Snapping Shrimp Snap: Through Cavitating Bubbles.” Science, Vol. 289, pp. 2114-2117, 2000.
[87]Suhr D, Brummer F and Hulser DF., “Cavitation-generated free radicals during shock wave exposure: investigations with cell-free solutions and suspended cells,” Ultrasound in Med. & Biol., Vol. 17, No. 8, pp. 761-768, 1991.
[88]Riesz P, Berdahl D and Christman CL., “Free radical generation by ultrasound in aqueous and nonaqueous solutions,” Environ Health Perspect., Vol. 64, pp. 233-252, 1985.
[89]Miller, M. W., Miller, D. L. and Brayman, A. A., “A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective,” Ultrasound in Med. & Biol., Vol. 22, pp. 1131-1154, 1996.
[90]Wyber, J. A., Andrews, J. and D Emanuele, A., “The use of sonication for the efficient delivery of plasmid DNA into cells,” Pharm. Res. Vol. 14, pp. 750-756, 1997.
[91]Apfel RE., “Sonic effervescence: A tutorial on acoustic cavitation,” J. Acoust. Soc. Am., Vol. 101, pp. 1227-1237, 1997.
[92]Allan Lawrie, Axel F. Brisken, Sheila E. Francis, David Wyllie, Endre Kiss-Toth, Eva E. Qwarnstrom, Stephen K. Dower, David C. Crossman and Christopher M. Newman, “Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals,” Ultrasound in Med. & Biol., Vol. 29, No. 10, pp. 1453-1461, 2003.
[93]Olsson B., “Determination of hydrogen peroxide in a flow system with microperoxidase as a catalyst for the luminol chemi-luminescence reaction,” Anal Chim Acta, Vol. 136, pp. 113-119, 1982.
[94]Cramer E and Lauterborn W, “Acoustic cavitation noise spectra,” Appl Sci Res, Vol. 38, pp. 209-214, 1982.
[95]Everbach EC, Makin IR, Azadniv M, Meltzer RS, “Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro,” Ultrasound in Med. & Biol., Vol. 23, No. 4, pp. 619-624, 1997.
[96]Lauterborn W and Cramer E, “On the dynamics of acoustic cavitation noise spectra,” Acustica, Vol. 49, pp. 280-287, 1981.
[97]物質安全資料表, Material Safety Data Sheets, http://www.iosh.gov.tw/msds.htm
[98]Tieli Li, Katsuro Tachibana, Motomu Kuroki and Masahide Kuroki, “Gene Transfer with Echo-enhanced Contrast Agents: Comparison between Albunex, Optison, and Levovist in Mice—Initial Results,” Radiology, Vol. 229, p. 423, 2003.
[99]Shin-ichiro Umemura, Ken-ichi Kawabata and Kazuaki Sasaki, “In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition,” J. Acoust. Soc. Am., Vol. 101, No. 1, pp. 569-577, 1997.
[100]Ken-ichi Kawabata and Shin-ichiro Umemura, “Effect of periodic phase shift on acoustic cavitation induction with second-harmonic superimposition,” Japanese Journal of Applied Physics, Vol. 42, No. 5B, pp. 3246-3250, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊