跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴冠廷
研究生(外文):Kuan-Ting Lai
論文名稱:使用線性模型來評估快閃式類比數位轉換器的內建自我測試器在製程變異下的效能
論文名稱(外文):Using Linear Models to Evaluate the Performance of Flash AD C''s BIST under Process Variation
指導教授:黃俊郎黃俊郎引用關係
指導教授(外文):Jiun-Lang Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:46
中文關鍵詞:線性模型快閃式類比數位轉換器內建自我測試器製程變異
外文關鍵詞:Linear ModelFlash ADCBISTProcess Variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著IC製程邁向奈米時代,電路的面積更小、密度更高、速度更快,讓外接測試機台的成本也愈來愈高。因此,可測試性設計(Dft, Design for Test)技術,成為市場接受度越來越高的解決方案。然而,雖然在數位方面可測試性設計的技術已經十分的成熟,類比方面的接受度還有待提升。主要的問題在於(1)缺乏可靠的方法來評估技術好壞,(2)模擬時間太長。除此之外,一般的內建自我測試電路,都與待測電路一樣,受到製程變異的影響。這讓評估DfT技術更加地困難。
在這篇論文中,我們提出了一套方法來評估內建測試電路在製程變異下的效能。這個方法考慮了製成變數之間的相關性,所以能得到更準確的模擬結果。我們實做了一套自動化評估工具,並用一個內建自我測試電路的6-bit快閃式類比數位轉換器來做驗證。我們也利用線性模型,提出了一個加速的方法。實驗結果顯示,新方法比原本的蒙地卡羅方法快了大約一百倍左右。
As today’s IC technology continues moving forward nanometer era, the cost of using external testers to distinguish between faulty and good circuits has risen to an unacceptable high level. Therefore, DfT (Design-for-Test) techniques have prevailed in recent years. However, unlike their digital counterparts, the Analog DfT techniques are far from being widely adopted. The main reasons are (1) lack of reliable method to evaluate DfT techniques, and (2) the time-consuming simulation process. Besides, the BIST (Built-in Self Test) circuit suffers the same process variation effects as its DUT (Device under Test) circuit. This fact makes evaluating BIST performance more difficult.
In this thesis, we propose a method to evaluate BIST performance under process variation. The correlations between process parameters are considered, and simulation result is more close to real life. An automation evaluation tool is implemented, and a 6-bit flash ADC with a static ramp BIST is utilized as testing vehicle. We also introduce a novel methodology for accelerating the evaluation process of flash ADC. The experimental result shows that the new method is about hundred times faster than the Monte Carlo method.
Table of Contents (i)
Acknowledgement (ii)
Abstract (iii)
Figure Captions (v)
Table Captions (vi)

1.Introduction (1)
2.Preliminaries (3)
2.1Sources of Variations (3)
2.2 Process Variation (3)
2.3 Global (Inter-die) and local (Intra-die) Variations (6)
2.4 Characterizing and Modeling Mismatch (8)
2.5 Statistical Analysis of Process Variation (10)
3. Process Statistical Simulation (14)
3.1 Process Statistical Simulation Tools (14)
3.2 Simulation Flow (15)
3.3 Calculating Global and Local Correlation Data (17)
4. Evaluating BIST of Flash ADC (20)
4.1 Fundamentals of A/D Converters (20)
4.2 Testing of A/D Converters (24)
4.3 Evaluating BIST of Flash ADC (28)
4.4 A Speed up Technique (32)
4.5 Experimental Results (36)
5.Implementation of the Simulator (37)
5.1 Environment and Configuration (37)
5.2 Data Structure (38)
5.3 Functional Blocks and Flow Chart (40)
6. Conclusions and Future Work (42)
7. References (44)
[1] Pelgrom M., Duinmaijer A., Welbers A., “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. SC-24, no. 5, pp. 1433-1440, 1989.
[2] Vikas Mehrotra, “Modeling the Effects of Systematic Process Variation,” PHD thesis at the Massachusetts Institute of Technology, May 2001.
[3] D. Boning and S. Nassif, “Models of Process Variations in Device and Interconnect,” in Design of High Performance Microprocessor Circuits, Editors: A. Chandrakasan, W. Bowhill, F. Fox, IEEE Press, 2000.
[4] Buane Boning and Sani Nassif, “Models of Process Variations in Device and Interconnect,” Design of High-Performance mP Circuits, chapter 6, pp. 98-116.
[5] K. Bernstein, K. Carrig, C. Durham, P. Hansen, D. Hogenmiller, E. Nowak, and N. Rohrer, High Speed CMOS Design Styles. Kluwer, Boston, 1998.
[6] D. J. Frank, Y. Taur, M. Ieong, and H.-S. P. Wong, “Monte Carlo Modeling of Threshold Variation due to Dopant Fluctuations,” VLST Technology Symposium, pp. 169-170, June 1999.
[7] http://www.veeco.com/appnotes/Minimizing_DE_in_Copper_CMP.pdf
[8] Teresa Serrano Gotarredona, Bernabe Linares Barranco, “Systematic Width-and-Length Dependent CMOS Transistor Mismatch Characterization and Simulation,” Analog Integrated Circuit and Signal Processing, 21, 271-296, 1999.
[9] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design,” Holt, Rinehart and Winston, Inc., New York, 1987.
[10] K. Lakshmikumar, R. Hadaway, M. Copeland, “ Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, no. 6, pp. 1057-1066, 1986.
[11] J. Bastos, M. Steyaert, A. Pergoot, W. Sansen, “Mismatch characterization of submicron MOS transistors,” Analog Integrated Circuits and Signal Processing, vol. 12, pp. 95-106, 1997.
[12] Teresa Serrano Gotarredona, Bernabe Linares Barranco, “A Methodology for MOS Transistor Mismatch Parameter Extraction and Mismatch Simulation,” IEEE International Symposium on Circuits and Systems, Num. 1, pp. 109-112, 2000.
[13] Paweł Gryboś, “Low Noise Multichannel Integrated Circuits in CMOS,” AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne Kraków, 2002.
[14] ZKOM GmbH. GAME 3.7 User’s Manual. ZKOM GmbH, Dortmund, Germany, www.zkom.de, 1998.
[15] A. Maxim, M. Gheorghe, “A novel physical based model of deep-submicron CMOS transistors mismatch for Monte Carlo SPICE simulation,” IEEE Circuits and Systems, Volume 5, pp. 511-514, May 2001.
[16] Carlo Gaurdiani, Sharad Saxena, Patrick McNamara, Phillip Schumaker, Dale Coder, “An asymptotically constant, linearly bounded methodology for the statistical simulation of analog circuits including component mismatch effects,” DAC, pp.15-18, 2000.
[17] S. R. Nassif, A. J. Strojwas, and S. W. Director, “FABRICS II: A statistically based IC fabrication process simulator,” IEEE Transactions on Computer-Aided Design, vol. CAD-3, no. 1, pp. 40-46, January 1984.
[18] G. Biagetti, S. Orcioni, L. Signoracci, C. Turchetti, P. Crippa and M. Alessandrini, "SiSMA: a statistical simulator for mismatch analysis of MOS ICs", in Digest of Technical Papers of the 20th IEEE/ACM International Conference on Computer Aided Design (ICCAD 2002), San Jose, CA, Nov. 2002, pp. 490-496.
[19] G. Biagetti, S. Orcioni, C. Turchetti, P. Crippa and M. Alessandrini, "SiSMA - A Tool for Efficient Analysis of Analog CMOS Integrated Circuits Affected by Device Mismatch", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp. 192-207, Feb. 2004.
[20] P. Feldmann and S. W. Director, “Accurate and efficient evaluation of circuit yield and yield gradients,” International Conference on Computer-Aided Design, 1990, pp. 120–123.
[21] P. Feldmann and S. W. Director, “Improved methods for IC yield and quality optimization using surface integrals,” International Conference on Computer-Aided Design, 1991, pp. 158–161.
[22] S. W. Pan and Y. H. Hu, “PYFS—A statistical optimization method for integrated circuit yield enhancement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 2, pp. 296–309, February 1993.
[23] A. Seifi, K. Ponnambalam, and J. Vlach, “A uni-fied approach to statistical design centering of integrated circuits with correlated parameters,” IEEE Transactions on Circuit and Systems I: Fundamental Theory and Applications, vol. 46, no. 1, pp. 190–196, January 1999.
[24] Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design,” Oxfored University Press, 2002.
[25] Mark Burns and Gordon W. Roberts, “An Introduction to Mixed-Signal IC Test and Measurement,” Oxfored University Press, 2001.
[26] F. Aza ï s, S. Bernard, Y. Bertrand, X. Michel, and M. Renovell, “A Low-Cost Adaptive Ramp Generator for Analog BIST Applications,” VLST Testing Syposium, 2001.
[27] David Kincaid and Ward Cheney, “Numerical Analysis: Mathematics of Scientific Computing,” Third Edition, BROOKS/COLE Series in Advanced Mathematics, 2002.
[28] Shyh-Chyi Wong, Jyh-Kang Ting and Shun-Liang Hsu, “Characterization and Modeling of MOS Mismatch in Analog CMOS Technology,” International Conference on Microelectronic Test Structures (ICMTS), pp. 171-176, March 1995.
[29] Massimo Conti, Paolo Crippa, Simone Orcioni, and Claudio Turchetti., “Layout-based statistical modeling for the prediction of the matching properties of MOS transistors,” IEEE Trans. Circuits System, pp.680-685, May 2002.
[30] Anchada Charoenrook and Mani Soma, “A Fault Diagnosis Technique for Flash ADC’s, ” IEEE Trans. on Circuits and Systems, VOL. 43, No. 6, June 1996.
[31] P. N. Variyam and A. Chatterjee, “Enhancing test effectiveness for analog circuits using synthesized measurements,” VLSI Test Symposium, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林美和(民85)。資訊素養與終身學習的關係。社教雙月刊,73,頁7。
2. 李麗君(民87)。終身學習理念對教學設計的啟示。教學科技與媒體,41,15-22。
3. 李德竹(民89)。資訊素養的意義、內涵與演變。圖書與資訊學刊,35,1-25。
4. 李昆翰(民88)。小學的資訊素養教育。研習資訊,16:5,12-25。
5. 林菁(民87)。國民小學圖書館利用教育評析—個案研究。國民教育研究學報,4,頁69-98。
6. 李春芳(民86)。中小學圖書館利用教育與各學科教學。社教雙月刊,81,15-19。
7. 沈中偉(民88)。國小資訊教師的省思和理念。資訊與教育,71。
8. 朱則剛(1992)。建構主義對教學設計的意義。教學科技與媒體,12,3-14。
9. 林菁(民90)。國小圖書資訊利用教育課程教學探討。北縣教育,39,30-37。
10. 莊道明(民87)。以資訊素養為基礎的圖書館利用教育課程-世新大學圖書館實施方式。書苑,35,27-36。
11. 陳仲彥(民85)。資訊素養與圖書館利用教育。社教雙月刊,73,19-22。
12. 陳雪華(民85)。網路資源與圖書館利用教育。教學科技與媒體,25,3-12。
13. 曾淑賢(民85)。台灣地區推展兒童圖書館利用教育之近況。書苑,29,頁49-63。
14. 賴苑玲(民90)。如何將Big Six 技能融入國小課程。書苑季刊,48,25-38。
15. 韓善民(民90)。我國資訊教育發展現況與展望。資訊與教育,81期,7-12。