跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃三照
研究生(外文):San-Chao Hwang
論文名稱:線性回饋類神經網路應用於擴散權重迴訊平面磁振影像之渦電流補償
論文名稱(外文):Fast Eddy Current Compensationby Feedback Linearization Neural Networks:Applications inDiffusion-Weighted Echo Planar Imaging
指導教授:陳志宏陳志宏引用關係
指導教授(外文):Jyh-Horng Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:66
中文關鍵詞:擴散權重迴訊平面影像渦電流效應線性迴歸類神經網路
外文關鍵詞:DW-EPIEddy currentFeedback linearization neural networksPreemphasis adjustment.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由擴散權重磁振造影(Diffusion-Weighted Magnetic Resonance Imaging; DWI)對水分子擴散運動的敏感性,擴散權重磁振造影能夠量測活體內水分子擴散的狀況。並能顯示顯微結構的特性這在臨床診斷及基礎醫學研究上是一項有用的工具。為了得到活體內水分子的擴散特性,擴散權重磁振造影需要很多張的磁振影像在不同方向加上不同大小的梯度磁場。使用擴散權重迴訊平面影像(Diffusion-Weighted Echo Planar Imaging; DW-EPI)能增快造影時間,但由於快速切換的梯度磁場會在梯度磁場線圈周圍的金屬表面上產生渦電流效應,雖然主動式磁場屏敝可以大幅減低產生的渦電流效應,但當大而且快速切換的梯度磁場依然會產生足以造成影像扭曲的渦電流效應。

本研究應用線性迴歸類神經網路於梯度磁場的系統參數調整,這種方法不需要重覆量測與調整,因此所需時間非常短。這與人工憑經驗調整相比不僅較可靠,所需要的時間也由幾小時減為幾分鐘,以假體的擴散權重迴訊平面影像做驗證,用我們研究的系統參數調整方法,渦電流效應所造成影像扭曲和位移可有效抑制到一個影像點數以下。目前我們已經運用這項技術於豬心的擴散張量磁振影像上(Diffusion Tensor Imaging; DTI) ,並且成功的計算出豬心肌纖維的三度空間結構。未來我們將利用這磁振影像技術於人腦的神經聯結的研究上。
Diffusion-weighted magnetic resonance imaging (DWI) sensitizes the magnetic resonance images to the diffusive mobility of water and maps water diffusion in tissue. It can highlight the microstructural characteristics of biological tissues and serve as a useful imaging tool for both clinical diagnosis and basic medical research.

A large number of images with different magnitudes and directions of the diffusion sensitizing gradients need be acquired in order to estimate the diffusion properties. For efficiency, these images are usually acquired using diffusion-weighted echo-planar imaging sequence (DW-EPI). The rapid switching of the gradient pulses of DW-EPI can generate eddy currents in conducting surfaces surrounding the gradient coils. Although generation of eddy currents is greatly decreased in an active shielded gradient system, this can still occur especially when using large and rapidly rising and falling diffusion sensitization gradient pulses.

This study describes the application of the feedback linearization neural networks, known from neural network computing, to the problem of gradient preemphasis. This approach of preemphasis adjustment doesn’t require an iterative procedure between measurement and adjustment, therefore is essentially instantaneous in its execution. Based on our study, gradient compensation determined by our procedure effectively suppressed eddy current induced geometric distortion and spatial shift of diffusion-weighted EPI images. Comparing the manual preemphasis adjustments, this approach not only is reliable and accurate but also can reduce the spent time from several hours to several minutes. We have successfully applied this technique to the pig heart fiber tracking with diffusion tensor echo planar imaging (DT-EPI). In the future, the human brain white matter connectivity will be also studied.
Tables of Contents

Chapter 1 Introduction
1.1 Introduction----------------------------------------------------------------------------1
1.2 Motivation and Goal------------------------------------------------------------------1
1.3 Outline----------------------------------------------------------------------------2

Chapter 2 Background
2.1 Introduction----------------------------------------------------------------------------3
2.1 Diffusion-Weighted Magnetic Resonance Imaging------------------------------4
2.2 Circuit Model of Eddy Current Effects--------------------------------------------8
2.3 Pulse Modification-------------------------------------------------------------------10
2.4 Imaging Post-Processing------------------------------------------------------------11
2.5 Preemphasis Adjustments-----------------------------------------------------------13

Chapter 3 EPI Gradient Preemphasis Optimization with Neural Networks Modeling
3.1 Introduction---------------------------------------------------------------------------15
3.2 Methods-------------------------------------------------------------------------------16
3.2.1 Preemphasis Parameters----------------------------------------------------16
3.2.2 Neural Networks Modeling------------------------------------------------17
3.3 Results---------------------------------------------------------------------------------18
3.4 Discussion----------------------------------------------------------------------------24
3.5 Summary------------------------------------------------------------------------------25

Chapter 4 Fast Eddy Current Compensation by Feedback Linearization Neural Networks: Applications in Diffusion-Weighted Echo Planar Imaging
4.1 Introduction---------------------------------------------------------------------------27
4.2 Feedback Linearization Control Theory------------------------------------------28
4.3 Methods-------------------------------------------------------------------------------30
4.3.1 Pickup Coil-------------------------------------------------------------------30
4.3.2 Feedback Linearization Neural Networks--------------------------------34
4.3.3 DW-EPI Acquisition--------------------------------------------------------35
4.3.4 Measurement of the DW-EPI Geometric Distortion--------------------36
4.4 Results---------------------------------------------------------------------------------37
4.4.1 Simulated and Experimental Results--------------------------------------37
4.4.2 DW-EPI Sequence Diagram-----------------------------------------------39
4.4.3 DW-EPI gradient waveforms with Preemphasis Adjustments--------39
4.4.4 DW-EPI Phantom Imaging-------------------------------------------------42
4.5 Discussion-----------------------------------------------------------------------------42
4.6 Conclusion----------------------------------------------------------------------------45

Chapter 5 B0 Shift Preemphasis Adjustments with Phase Evolution Measurement
5.1 Introduction---------------------------------------------------------------------------46
5.2 Methods-------------------------------------------------------------------------------47
5.2.1 Measurement of the Eddy Current Induced Field-----------------------47
5.2.2 Decomposition of Phase Evolution----------------------------------------48
5.2.3 Fitting B0 Shift Preemphasis Adjustment---------------------------------49
5.3 Results---------------------------------------------------------------------------------49
5.4 Pig Heart DT-EPI--------------------------------------------------------------------52
5.5 Summary------------------------------------------------------------------------------55

Chapter 6 Discussions and Conclusions
6.1 Image-Based Methods-----------------------------------------------------------56
6.2 Pulse Modification Methods----------------------------------------------------57
6.3 Preemphasis Adjustments Algorithms ----------------------------------------57
6.4 Gradient Waveform Measurements--------------------------------------------58
6.5 DW-EPI Experiment Concern--------------------------------------59
6.6 Conclusion-------------------------------------------------------------------------60
6.7 Future Works ----------------------------------------------------------------------62
Reference

1.Merboldt KD, Hanicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 1985; 64:479–486.
2.C.P. Lin, W.Y. Isaac Tseng, H.C. Cheng and J.H. Chen, Validation of Diffusion Tensor Magnetic Resonance Axonal Fiber Imaging with Registered Manganese-enhanced Tractography. NeuroImage 2001; 14:1035-1047.
3.C.P. Lin, V.J. Wedeen, J.H. Chen, Ching Yao and W.Y. Isaac Tseng, Validation of Diffusion Spectrum Magnetic Resonance Imaging with Manganese-enhanced Rat Optic Tracts and ex vivo Phantom. NeuroImage 2003; 19:1482-495.
4.M.A. Morich, D. A. Lampman, W.R. Dannels, and F.T.D. Goldie, Exact temporal eddy current compensation in magnetic resonance imaging systems. IEEE Trans Med Imag 1988; 7:247-254.
5.J.C. Haselgrove and J.R. Moore, Correction for distortions of echo-planar images used to calculate apparent diffusion coefficient. Magn Reson Med 1996; 36:960-964.
6.T.G. Reese, O. Heid, R.M. Weisskoff, and V.J. Wedeen, Reduction of Eddy-Current-Induced Distortion in Diffusion MRI Using a Twice-Refocused SPIN Echo. Magn Reson Med 2003; 49:177-182.
7.Yuji Shen, D. J. Larkman and Serena Counsell, Correction of High-Order Eddy Current Induced Geometric Distortion in Diffusion-Weighted Echo-Planar Images. Magn Reson Med 2004; 52:1184-1189
8.M.T. Alley, G.H. Glover, and N.J. Pelc, Gradient Characterization Using a Fourier Transform Technique. Magn Reson Med 1998; 39:581-587.
9.V.J. Schmithorst and B.J. Dardzinski, Automatic Gradient Preemphasis Adjustment: A 15-Minute Journey to Improved Diffusion-Weighted Echo-Planar Imaging. Magn Reson Med 2002; 47:208-212.
10.M.E. Fry, S. Pittard, and I.R. Summers, et al.,. A programmable Eddy-Current Compensation System for MRI and Localized Spectroscopy. J Magn Reson Imag 1997; 7(2):455-458.
11.P. Jehenson, M. Westphal, and N. Schuff, Analytical method for the compensation of eddy-current effects induced by pulsed magnetic fields gradients in NMR systems. J Magn Reson 1990; 90:264-278.
12.J.J. van Vaals, and A.H. Bergman, Optimization of eddy-current compensation. J Magn Reson 1990; 90:52-70.
13.R.E. Wysong, and I.J.Lowe, A simple method of measuring gradient induced eddy currents to set compensation network. Magn Reson Med 1993; 29:119-121.
14.Yu-Kun Lin, Ching Yao, Jyh-Horng Chen, Automatic Eddy Current Compensation in Echo Planar Imaging, Proc ISMRM Ann Meeting, Hawaii, 2002.
15.J.A. Nelder and R. Mead, A simplex method for function minimization. Computer Journal 1965; 7:308-313.
16.Nils Bodammer, J. Kaufmann, Martin Kanowski, and Claus Tempelmann. Eddy Current Correction in Diffusion-Weighted Imaging Using Pairs of Images Acquired With Opposite Diffusion Gradient Polarity. Magn Reson Med 2004; 51:188–193.
17.S. He, K. Reif and R. Unbehauen, A neural Approach for Control of Nonlinear Systems with Feedback Linearization. IEEE Trans. Neural Networks 1998; 9:1409-1421.
18.M. Nørgaard, 2000. Neural Network Based System Identification Toolbox. Tech. Report. 00-E-891, Dept. of Automation, Tech. Univ. of Denmark,
19.A.U. Levin and K.S. Narendra, Control of nonlinear dynamical systems using neural networks: Controllability and stabilization. IEEE Trans Neural Networks 1993; 4:192–206.
20.Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med. 1998; 39:801-812.
21.Bammer R, Auer M, Keeling SL, Augustin M, Stables LA, Prokesch RW, Stollberg R, Moseley ME, Fazekas F. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48:128_136.
22.Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 1999; 17:1335_1345.
23.Andersson JLR, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 2002; 16:177-199.
24.Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion weighted MRI. Magn Reson Med 2004; 51:103_114.
25.Grieve SM, Blamire AM, Styles, P. Elimination of Nyquist ghosting caused by read-out to phase-encode gradient cross-terms in EPI. Magn Reson Med 2002; 47:337-343.
26.Papadakis NG, Wilkinson AA, Carpenter TA, Hall LD. A general method for measurement of the time integral of variant magnetic field gradients: application to 2d spiral imaging. Magn Reson Imaging 1997; 15:567-578.
27.A.L. Alexander, J.S. Tsuruda, and D.L. Parker, “Elimination of eddy current artifacts in diffusion-weighted echo planar images: the use of bipolar gradients”, Magn. Reson. Med., 38:1016-1021, 1997.
28.M. Cercignani, M.A. Horsfield, “An optimized pulse sequence for isotropically weighted diffusion imaging”, J. Magn. Reson. 1999; 140:58-68.
29.P.J. Basser and D.K. Jones, Diffusion-tensor MRI: theory, experimental design and data analysis- a technical review. NMR in Bio 2001; 15:456–467
30.Duyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction methods for k-space trajectory deviations in MRI. J Magn Reson 1998; 132:150–153.
31.N.G. Papadakis, K. M. Martin and J. D. Pickard. Gradient Preemphasis Calibration in Diffusion-Weighted Echo-Planar Imaging. Magn Reson Med 2000; 44:616–624.
32.N.G. Papadakis, Theo Smponias, Jason Berwick. k-Space Correction of Eddy-Current-Induced Distortions in Diffusion-Weighted Echo-Planar Imaging. Magn Reson Med 2005; 53:1103–1111.
33. P.J. Basser and Sinisa Pajevic. Statistical Artifacts in Diffusion
Tensor MRI (DT-MRI) Caused by Background Noise. Magn Reson
Med 2000; 44:41-50.
34. J.-D. Tournier, F. Calamante, M.D. King. Limitations and Requirements of
Diffusion Tensor Fiber Tracking: An Assessment Using Simulations.Magn Reson Med 2002; 47:701–708.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文