[1] 吳冬立, “並聯式六自由度奈米級微定位平台研製,” 國立台灣大學機械工程研究所碩士論文, 2002.[2] Minoru Kuribayashi, Osamu Kodaira, Yuki Tsuchitoi, Toshiro Higuchi, “Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 45, NO. 5, September 1998.
[3] James R., Jun Satonobu, Kentaro Nakamura, Sadayuki Ueha, Daniel S. Stutts, “A single-element tuning fork piezoelectric linear actuator,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 50, NO. 2, February 2003.
[4] Siyuan He, Weishan Chen, Xie Tao, and Zaili Chen, “Standing wave bi-directional linearly moving ultrasonic motor,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 45, NO. 5, September 1998.
[5] Baonian Zhai, Siak-Piang Lim, Kwok-Hong Lee, Shuxiang Dong, Pin Lu, “A modified ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 86, 154–158, 2000.
[6] Junichi Toyota and Kanji Murano, “A Small-Size Ultrasonic Linear Motor,” Japanese Journal of Applied Physics, VOL. 30, NO. 9B, pp. 2274-2276, September, 1991.
[7] Cheol-Ho, Takaaki Ishii, Kentaro Nakamura, Sadayuki Ueha and Koji Akashi, “A High Power Ultrasonic Linear Motor Using a Longitudinal and Bending Hybrid Bolt-Clamped Langevin Type Transducer,” Japanese Journal of Applied Physics, VOL. 40, pp. 3773-3776, Part 1, NO. 5B, May, 2001.
[8] Tomoki Funakubo, Toshiharu Tsubata, Yoshihisa Taniguchi, Kazuhiro Kumei, Takanao Fujimura and Chikara Abe, “Ultrasonic Linear Motor Using Multilayer Piezoelectric Actuators,” Japanese Journal of Applied Physics, VOL. 34, pp. 2756-2759, Part 1, NO. 5B, May, 1995.
[9] Tomoki Funakubo, Yoshiro Tomikawa, “Characteristics of 10 mm Multilayer L1-F2 Mode Vibrator and Application to a Linear Motor,” Japanese Journal of Applied Physics, VOL. 42, pp. 3002-3006, Part 1, NO. 5B, May, 2003.
[10] Takehiro Takano and Yoshiro Tomikawa, ”Characteristics of the Ultrasonic Linear Motor Using Radial and Nonaxisymmetric Vibration Modes of an Annular Plate,” Japanese Journal of Applied Physics VOL. 34, pp. 5288-5291, Part 1, No. 9B, September 1995.
[11] Yuichi Maruko, Yoshiro Tomikawa and Takehiro Takano, ” Piezoelectric Linear Motor with Two Motional Functions of Small Displacement and Large Displacement,” Japanese Journal of Applied Physics VOL. 34, pp. 5288-5291, Part 1, No. 9B, September 1995.
[12] Takahiro Masuda, Yoshiro Tomikawa and Takehiro Takano, ”Piezoelectric Linear Motor Using (R,1)-((1,1)) Mode Disk Equipped with T-Type Support Jigs for Realizing its Fine Performance,” Japanese Journal of Applied Physics VOL. 43, pp. 2879–2883, No. 5B, 2004.
[13] Yongrae Roha, Jaehwa Kwon, ”Development of a new standing wave type ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 112, 196-202, 2004.
[14] Yongrae Roha, Susung Lee, Wooseok Han, ”Design and fabrication of a new traveling wave-type ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 94, 205-210, 2001.
[15] Minoru Kuribayashi Kurosawa, “State-of-the-art surface acoustic wave linear motor and its future applications,” Ultrasonics, Elsevier Science, Volume: 38, Issue: 1-8, pp. 15-19, March, 2000.
[16] Masaya Takasaki, Minoru Kuribayashi Kurosawa, Toshiro Higuchi, “Optimum contact conditions for miniaturized surface acoustic wave linear motor,” Ultrasonics, Elsevier Science, Volume: 38, Issue: 1-8 , pp. 51-53, March, 2000.
[17] Minoru Kuribayashi Kurosawa, Hidenori Itoh, Katsuhiko Asai, “Elastic friction drive of surface acoustic wave motor,” Ultrasonics, Elsevier Science, Volume: 41, Issue: 4, 271-275, June, 2003.