跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊晨暉
研究生(外文):CHEN-HUI YANG
論文名稱:雙層壓電式超音波馬達之研究
論文名稱(外文):Research on Bimorph Ultrasonic Motors
指導教授:張所鋐
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:208
中文關鍵詞:超音波馬達雙層壓電振動片壓電材料振動模態響應頻率變焦與對焦系統
外文關鍵詞:ultrasonic motorbimorphpiezoelectric materialvibration moderesonant frequencyfocusing and zooming systems
相關次數:
  • 被引用被引用:6
  • 點閱點閱:549
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技的發展,各種消費性電子產品普遍為人類所使用,如何讓這些產品體積更小、重量更輕成為產品成功與否的關鍵之一。在各類產品之中,微小化機械產品的需求也逐漸增加。如各種相機產品,其對焦、變焦系統更是仰賴各類如線圈馬達等致動器做為鏡片移動的重要原件。但是傳統馬達的各種缺點成為相機小型化的一大障礙。因此,利用超音波馬達高速、設計多變的優點利用在相機對焦、變焦系統中成為超音波馬達的一個新的應用。本研究的研究目標便是研發一種體積小、重量輕、製造與設備成本低的新超音波馬達。
本研究利用雙層壓電振動片作為雙層壓電式超音波馬達的主要結構,配合氧化鋁的耐磨特性作為雙層壓電式超音波馬達的接觸點與被驅動表面的摩擦材質。並利用ANSYS作有限元素法模態來模擬與驗證其操作模態。在一系列量測其最大驅動速度、可承受的最大負載與能量轉換效率的研究後,完成了體積小、重量輕、設計簡單、生產與設備簡單的高效能超音波馬達。其外型最大尺寸僅為9 mm * 3 mm * 2.3 mm,最大速度高達255 mm/s,最大可承受負載高達20.5 g。其各項效能對體積標準化後與文獻中的各種超音波達作比較,可以發現雙層壓電式超音波馬達擁有十分優異的效能。未來應用層面廣泛。
With the advance of technology, many kinds of consuming electronic products are broadly used in lives. How to make these products smaller and lighter is crucial to the success of these products. The demand of miniaturized mechanisms is gradually increasing. In all kinds of cameras, the focusing and zooming systems rely heavily on coil motors that move the lenses. However, the insufficiencies of coil motors have been an obstacle in the miniaturization of cameras. Therefore, it is a new application to use ultrasonic motors in focusing and zooming systems. The purpose of this research is to design a small-sized, light-weighted and mass-producible ultrasonic motor with low-cost operating equipments.
This research uses bimorph as the main structure of Bimorph Ultrasonic Motor (BUSM) with alumina as contact point material and driven surface material which take advantage of the wear-resistant ability. The operating modes are simulated and verified with ANSYS. After measuring of the maximum velocity, the maximum mechanical load which can be endured by BUSM and the energy transducing efficiency, BUSM has proved it is a small-sized, light-weighted, simply-designed and mass-producible ultrasonic motor with simple operating equipments. The maximum size of the shape is only 9 mm * 3 mm * 2.3 mm, and the maximum driving velocity and output force is 255 mm/s and 20.8 g. The volume-standardized performances of BUSM are outstanding in comparison with other ultrasonic motors. In the future, we are confident that the application of BUSM will be broad.
中文摘要 I
英文摘要 II
目錄 III
圖例目錄 VII
表格目錄 XV
第1章 緒論 1-1
1.1 研究背景與動機 1-1
1.2壓電的基本性質 1-3
1.2.1 壓電材料的組成律 1-3
1.2.2 機電轉換係數 1-5
1.2.3 壓電致動 1-6
1.2超音波馬達基本原理 1-7
1.3 文獻回顧 1-8
1.3.1 駐波式超音波馬達 1-8
1.3.2 行波式超音波馬達 1-17
1.3.3 表面波式超音波馬達 1-18
1.4 研究目標 1-20
第2章 超音波馬達之設計與模擬 2-1
2.1 雙層壓電式超音波馬達之設計 2-1
2.2有限元素法模型建立 2-4
2.3 模擬分析結果與驗證 2-6
2.3.1 正向驅動模態之模擬與驗證 2-9
2.3.2 反向驅動模態之模擬與驗證 2-11
2.4 雙層壓電式超音波馬達工作原理 2-13
2.4.1 正向驅動原理 2-13
2.4.2 反向驅動原理 2-17
第3章 系統架設與實驗設備 3-1
3.1 量測系統架設 3-3
3.1.1 頻譜分析量測系統 3-3
3.1.2 模態量測系統 3-4
3.1.3 負載、速度、輸入電能量測系統 3-5
3.2 夾具設計 3-7
3.3 實驗設備 3-14
第4章 實驗數據與結果 4-1
4.1 暫態分析 4-1
4.1.1 正向驅動暫態分析 4-1
4.1.2 反向驅動暫態分析 4-6
4.2 頻率響應分析 4-9
4.3 接觸角對性能影響 4-11
4.3.1 接觸角對操作頻率的影響 4-11
4.3.2 接觸角對最大負載的影響 4-13
4.3.3 接觸角對最大速度的影響 4-15
4.3.4 最佳接觸角 4-17
4.4 輸入電壓對性能影響 4-18
4.4.1 輸入電壓對操作頻率的影響 4-18
4.4.2 輸入電壓對最大負載的影響 4-20
4.4.3 輸入電壓對最大速度的影響 4-22
4.4.4 最佳輸入電壓討論 4-24
4.5能量轉換效率 4-25
4.5.1 正向驅動電壓10 Vp0 4-26
4.5.2 正向驅動電壓20 Vp0 4-27
4.5.3 正向驅動電壓30 Vp0 4-30
4.5.4 反向驅動電壓10 Vp0 4-36
4.5.5 反向驅動電壓20 Vp0 4-40
4.5.6 反向驅動電壓30 Vp0 4-43
4.5.7 最大效率 4-50
4.6 最佳效率設定 4-52
4.7 結果與討論 4-55
第5章 未來與展望 5-1
R. 參考文獻 R-1
附錄A 大型雙層壓電式超音波馬達 A-1
A.1 超音波馬達之設計與模擬 A-1
A.2 夾具設計與量測系統 A-4
A.3 接觸角對最大負載影響 A-9
A.4 摩擦材質對效能影響 A-10
A.5 能量轉換效率 A-13
A.5.1 rubber-1 2mm之能量轉換效率 A-13
A.5.2 rubber-2 2mm之能量轉換效率 A-15
A.5.3 最大效率 A-18
A.6 結果與討論 A-20
附錄B 夾具設計圖 B-1
附錄C 模態量測原始圖 C-1
C.1 正向驅動模態量測原始圖 C-2
C.2 反向驅動模態量測原始圖 C-10
[1] 吳冬立, “並聯式六自由度奈米級微定位平台研製,” 國立台灣大學機械工程研究所碩士論文, 2002.

[2] Minoru Kuribayashi, Osamu Kodaira, Yuki Tsuchitoi, Toshiro Higuchi, “Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 45, NO. 5, September 1998.

[3] James R., Jun Satonobu, Kentaro Nakamura, Sadayuki Ueha, Daniel S. Stutts, “A single-element tuning fork piezoelectric linear actuator,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 50, NO. 2, February 2003.

[4] Siyuan He, Weishan Chen, Xie Tao, and Zaili Chen, “Standing wave bi-directional linearly moving ultrasonic motor,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, VOL. 45, NO. 5, September 1998.

[5] Baonian Zhai, Siak-Piang Lim, Kwok-Hong Lee, Shuxiang Dong, Pin Lu, “A modified ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 86, 154–158, 2000.

[6] Junichi Toyota and Kanji Murano, “A Small-Size Ultrasonic Linear Motor,” Japanese Journal of Applied Physics, VOL. 30, NO. 9B, pp. 2274-2276, September, 1991.

[7] Cheol-Ho, Takaaki Ishii, Kentaro Nakamura, Sadayuki Ueha and Koji Akashi, “A High Power Ultrasonic Linear Motor Using a Longitudinal and Bending Hybrid Bolt-Clamped Langevin Type Transducer,” Japanese Journal of Applied Physics, VOL. 40, pp. 3773-3776, Part 1, NO. 5B, May, 2001.

[8] Tomoki Funakubo, Toshiharu Tsubata, Yoshihisa Taniguchi, Kazuhiro Kumei, Takanao Fujimura and Chikara Abe, “Ultrasonic Linear Motor Using Multilayer Piezoelectric Actuators,” Japanese Journal of Applied Physics, VOL. 34, pp. 2756-2759, Part 1, NO. 5B, May, 1995.
[9] Tomoki Funakubo, Yoshiro Tomikawa, “Characteristics of 10 mm Multilayer L1-F2 Mode Vibrator and Application to a Linear Motor,” Japanese Journal of Applied Physics, VOL. 42, pp. 3002-3006, Part 1, NO. 5B, May, 2003.

[10] Takehiro Takano and Yoshiro Tomikawa, ”Characteristics of the Ultrasonic Linear Motor Using Radial and Nonaxisymmetric Vibration Modes of an Annular Plate,” Japanese Journal of Applied Physics VOL. 34, pp. 5288-5291, Part 1, No. 9B, September 1995.

[11] Yuichi Maruko, Yoshiro Tomikawa and Takehiro Takano, ” Piezoelectric Linear Motor with Two Motional Functions of Small Displacement and Large Displacement,” Japanese Journal of Applied Physics VOL. 34, pp. 5288-5291, Part 1, No. 9B, September 1995.

[12] Takahiro Masuda, Yoshiro Tomikawa and Takehiro Takano, ”Piezoelectric Linear Motor Using (R,1)-((1,1)) Mode Disk Equipped with T-Type Support Jigs for Realizing its Fine Performance,” Japanese Journal of Applied Physics VOL. 43, pp. 2879–2883, No. 5B, 2004.

[13] Yongrae Roha, Jaehwa Kwon, ”Development of a new standing wave type ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 112, 196-202, 2004.

[14] Yongrae Roha, Susung Lee, Wooseok Han, ”Design and fabrication of a new traveling wave-type ultrasonic linear motor,” Sensors and Actuators A: Physical, Elsevier Science, 94, 205-210, 2001.

[15] Minoru Kuribayashi Kurosawa, “State-of-the-art surface acoustic wave linear motor and its future applications,” Ultrasonics, Elsevier Science, Volume: 38, Issue: 1-8, pp. 15-19, March, 2000.

[16] Masaya Takasaki, Minoru Kuribayashi Kurosawa, Toshiro Higuchi, “Optimum contact conditions for miniaturized surface acoustic wave linear motor,” Ultrasonics, Elsevier Science, Volume: 38, Issue: 1-8 , pp. 51-53, March, 2000.

[17] Minoru Kuribayashi Kurosawa, Hidenori Itoh, Katsuhiko Asai, “Elastic friction drive of surface acoustic wave motor,” Ultrasonics, Elsevier Science, Volume: 41, Issue: 4, 271-275, June, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top