跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩珊
研究生(外文):Pei-shan Wu
論文名稱:質子交換膜燃料電池電流密度及水分佈之觀測研究
論文名稱(外文):Analysis of Current Density and Water Distribution on PEM Fuel Cell
指導教授:郭景宗郭景宗引用關係
指導教授(外文):Jing-Tsung Kuo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:97
中文關鍵詞:質子交換膜燃料電池電流密度液態水分佈
外文關鍵詞:polymer exchange membran fuel cell(pemfc)current densityliquid water distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在質子交換膜燃料電池中,質子交換膜為了保持質子的傳導率,需要提供它水分,水管理方式與質子傳導率為息息相關,且有利於改善電池效能。

本實驗展示一種新的方法,可以提供一個視窗展現在電池運作時的液態水分佈。這個特別設計的電池是用以研究在不同加溼的狀況與流道的設計下,測量各時間與位置的電流密度。電流分佈量測是使用電流多通傳輸法,將電流分流器連接至相對應的區域以測量電流。進一步地,在陰極端的液態水形成之影像可以解釋在流道內淹水的現象。

此實驗使用兩種流道型式,在不同的氣體流量以及加熱溫度下操作。結果顯示,陽極端有一個氫氣入口的情況下,電池效能會隨著氣體流量增加而減少;與單進口相反,陽極端有兩個氫氣入口的情形下,電池效能會隨著氣體流量增加而增加。
In PEMFC, polymer membrane requires supplying with water in order to retain its proton conductivity, which depends strongly on the water management, which is essential for the enhancement of cell performance.

This experiment displays a novel method that provides a window which shows the distribution of liquid water in a fuel cell under operation. This specially designed cell is intended for use in studies on time and location measured current densities with different humidification and flow field design. Current distribution was measured by shunts with current multiplex method connected to the corresponding segments. Furthermore, image of water formed inside the cathode is presented to explain the phenomenon of water flooding in the gas channels.

There are two kinds of flow field in this experiment operated with different gas flow rates、heating temperatures. The results present with one hydrogen inlet in the anode, the performance is diminished with increasing gas flow rate; contrary to one hydrogen inlet, with two hydrogen inlets in the anode, the performance is increasing with increasing gas flow rate.
目錄
摘要
英文摘要
目錄
表目錄
圖目錄
第一章 緒論 …………………………………………………………1
1-1 前言 ……………………………………………………………1
1-1.1 緣起 …………………………………………………………1
1-1.2 燃料電池的發展 ……………………………………………2
1-2 研究動機 ……………………………………………………3
1-3 研究目的 ……………………………………………………5
第二章 理論分析與文獻回顧 ………………………………………6
2-1 質子交換膜燃料電池之運作原理 …………………………6
2-1.1 燃料電池內部的電化學反應 ………………………………6
2-1.2 燃料電池的機械構造 ………………………………………7
2-2 燃料電池內部之水傳輸與影響……………………………… 8
2-3 理論計算………………………………………………………9
2-3.1 進氣量、加濕溫度與電池操作溫度之關係 ………………9
2-3.2 進氣量之選擇 …………………………………………… 11
2-4 文獻回顧 …………………………………………………… 11
2-4.1 水管理方法與模擬 ……………………………………… 11
2-4.2 燃料電池電流密度之量測方法回顧 …………………… 20
第三章 實驗設備……………………………………………………25
3-1 實驗設備系統 ……………………………………………… 25
3-2 分割電極之單電池 ………………………………………… 28
3-2.1 單電池組合零件 ………………………………………… 28
3-2.2 分割電極之燃料電池組之組裝方式 …………………… 33
3-3 實驗步驟 …………………………………………………… 34
第四章 實驗方法與結果…………………………………………… 36
4-1 測量電流密度與水觀測之單電池設計方法沿革 ………… 36
4-1.1 電流密度量測與水觀測方法之簡介 …………………… 36
4-1.2 第一代水觀測電池 ……………………………………… 37
4-1.2第二代電流密度量測與水觀測電池……………………… 38
4-1.3 新式電流密度量測與水觀測電池 ……………………… 39
4-2 流道設計 …………………………………………………… 40
4-3 單進口實驗之結果 ………………………………………… 42
4-3.1加熱與加濕溫度各為70℃ ……………………………… 42
4-3.2加熱與加濕溫度各為50℃ ……………………………… 45
4-4 雙進口實驗之結果 ………………………………………… 47
4-4.1 加熱與加濕溫度各為70℃ ……………………………… 47
4-4.2 加熱與加濕溫度各為50℃ ……………………………… 50
4-5相同流量之比較與討論 …………………………………… 52
4-5.1 進氣流量0.5SLM ………………………………………… 52
4-5.2 進氣流量0.75SLM …………………………………………53
4-5.3 進氣流量1.0SLM ………………………………………… 54
4-5.4 進氣流量1.5SLM ………………………………………… 56
4-6 水分佈觀測 ………………………………………………… 58
4-6.1燥化現象 ……………………………………………………58
4-6.2 流道積水 …………………………………………………60
4-6.3 出口處………………………………………………………62
第五章 結論與建議 …………………………………………………63
5-1 結論 ………………………………………………………… 63
5-1.1 測量電流密度分佈之單電池設計…………………………63
5-1.2 水觀測之方法 …………………………………………… 63
5-1.3 單進口與雙進口流道形式之比較 ……………………… 64
5-2 反省與建議 ………………………………………………… 65
附錄 ……………………………………………………………………67
參考文獻 ………………………………………………………………83
參考文獻

1. W. K. Lee, J. W. Van Zee, S. Shimpalee, and S. Dutta, 1999, “Effect of humidity on PEM fuel cell performance part1-experiments”, Proceedings of ASME Heat Transfer Division.
2. W. K. Lee , S. Shimpalee , J. W. Van Zee, 2003, “Verifying Prediction of Water and Current Distributions in a Serpentine Flow Field Polymer Electrolyte Membrane Fuel Cell”, Journal of The Electrochemical Society, Vol. 150, No. 3, pp. A341-A348.
3. 辛銘仁,2004,“質子交換膜燃料電池電流密度分佈與水分佈之暫態分析研究”。
4. A.Hakenjos, K. Tüber, J. O. Schumacher, and C. Hebling, 2004, “Characterising PEM fuel cell performance using a current density distribution measurement in comparison with a CFD model”, Fuel Cells, No. 3, pp185-189.
5. Matti Noponen*, Tuomas Mennola, Mikko Mikkola, Tero Hottinen, Peter Lund, 2002, “Measurement of current distribution in a free-breathing PEMFC”, Journal of Power Sources, No. 106, pp. 304-312.
6. Kyoung-Hwan Choi, Dong-Hyun Peck, Chang-Soo Kim, Dong-Ryul Shin, and Tae-Hee Lee, 2000, “Water transport in polymer membranes for PEMFC”, Journal of Power Sources, No. 86, pp. 197-201.
7. Dilip Natarajan, Trung Van Nguyen, 2003, “Three-dimensional effects of liguid water flooding in the cathode of a PEM fuel cell”, Journal of Power Sources, No. 115, pp. 66-80.
8. S. Shimpalee, S. Greenway, D. Spuckler, J. W. Van Zee, 2004, “Predicting water and current distributions in a commercial-size PEMFC”, Journal of Power Sources, No. 135, pp. 79-87.
9. Alex Hakenjos., Harald Muenter, Ursula Wittstadt, Christopher Hebling, 2004, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding”, Journal of Power Sources, No. 131, pp. 213-216.
10. Klaus Tüber., David Pócza, Christopher Hebling, 2003, “Visualization of water buildup in the cathode of a transparent PEM fuel cell”, Journal of Power Sources, No. 124, pp. 403-414.
11. Guido Bender., Mahlon S. Wilson, Thomas A. Zawodzinski, 2003, “Further refinement in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cell”, Journal of Power Sources, No. 123, pp.163-171.
12. Young-Gi Yoon, Won-Young Lee, Tae-Hyun Yang, Gu-Gon Park, and Chang-Soo Kim, 2003, “Current distribution in a single cell of PEMFC”, Journal of Power Sources, No. 118, pp. 193-199.
13. Dilip Natarajan, Trung Van Nguyen, 2004, “Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells”, Journal of Power Sources, No. 135, pp. 95-109.
14. Jürgen Stumper et al,1998, “In-situ methods for the determination of current distributions in PEM fuel cells”, Electrochimica Acta, Vol. 43, No. 24, pp. 3773-3783.
15. S. J. C. CLEGHORN, C. R. DEROUIN, M. S. WILSON, S. GOTTESFELD , 1998 , “A print circuit board approach to measuring current distribution I a fuel cell”, Journal of Applied Electrochemistry, Vol. 28, pp.663-672.
16. Brady, M.P., Weisbrod, K., Paulauskas, I., Buchanan, R.A., More, K.L., Wang, H., Wilson, M., Garzon, F., Walker, L.R., 2004, “Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates”, Scripta Materialia, Vol. 50, Num. 7, pp1017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top