跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘三源
研究生(外文):San-Yuan Zhong
論文名稱:含一控制葉片之旋轉式壓縮機之最佳化設計
論文名稱(外文):Optimum Design of a Rotary Compressor with a Controlled Sliding Vane
指導教授:黃元茂
指導教授(外文):Yuan-Mao Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:207
中文關鍵詞:凸輪轉子機構遺傳演算法包絡線
外文關鍵詞:controlled sliding vanegenetic algorithmsenvelop
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究設計凸輪轉子機構控制葉片位置之旋轉式壓縮機,並以遺傳演算法之最佳化方法求得特定流量時之最高效率的壓縮機尺寸。由包絡線理論推導葉片之軸承在凸輪盤上運行之軌跡與轉子輪廓,當轉子旋轉時,葉片之軸承沿凸輪盤上之包絡線軌跡運行,控制葉片運動。適當的設計與加工,可使葉片與轉子間無摩擦損失,並利用右凸輪盤與右蓋板之關係形成氣體排氣裝置,取代排氣閥。研究方法為建立壓縮機之數學模型,分析幾何關係,推導凸輪盤與轉子之包絡線,再分析壓縮機之氣體性質與葉片動力模型,並以壓縮機之總效率即機械效率乘以容積效率作為目標函數,進行最佳化設計,根據最佳化結果,製作壓縮機模型並實驗,比較計算與實驗值。在轉速為180rad/s時,計算與實驗分別所得之壓縮比為3.01與2.91,排氣溫度為315.48K與312.25K,容積效率為80.76%與79.71%,機械效率為70.33%與68.53%,總效率為56.79%與54.62%,定義誤差量為計算值減去實驗值除以實驗值,在轉速為50rad/s~200rad/s之間時,壓縮機性能的計算值與實驗值之誤差都在4%以內。當設定體積流量與文獻相同時,本研究與文獻之壓縮機的最大機械效率實驗值分別為69.68%與68.3%,此效率時之轉速分別為14636rad/s與125.6rad/s,本研究之壓縮機機械效率較文獻高1.38%。
A rotary compressor with a controlled sliding vane is designed for a specific flow rate in this study. The genetic algorithms of the optimization method is used with the objective function of the maximum total efficiency, that is the multiplication of the mechanical efficiency and the volumetric efficiency, to determine the dimensions of the compressor. The envelop theorem is used to design the enveloped profiles on the cam plates and the contour of the rotor. When the rotor rotates, the bearings on the vane moves along the envelop profiles on the cam plates to control the motion of the vane. An appropriate design and fabrication of the compressor eliminates friction loss between the vane and the rotor. Utilizing the air outlet formed by the right cam plate and the right cover plate replaces the conventional outlet valve. A mathematical model of the compressor is generated. The geometric relation, the envelopes on the cam plate and the rotor, air properties and the vane dynamic behavior of the compressor are analyzed. The optimum designed compressor is fabricated and tested, and the calculated results are compared with the test data. At the rotor rotational speed of 180 rad/s, the compression ratios are 3.01 and 2.91, the outlet temperatures are 315.48 K and 312.25 K, the volumetric efficiencies are 80.76 % and 79.71 %, the mechanical efficiencies are 70.33 % and 68.53 %, the total efficiencies are 56.79 % and 54.62 % for the calculated results and the test data, respectively. The deviations of the calculated results and test data are within 4 % at the rotor rotational speed from 50 rad/s to 180 rad/s. With the same specific flow rate as an existing compressor, the maximum mechanical efficiencies of the optimum designed compressor and the existing compressor are 69.68 % and 68.3 %, respectively, at the corresponding rotational speeds of 146.6 rad/s and 125.6 rad/s. The mechanical efficiency of the current designed compressor is 1.38 % higher than that of the existing compressor.
中文摘要---------------------------------------------------i
英文摘要--------------------------------------------------ii
目錄-----------------------------------------------------iii
符號表----------------------------------------------------vi

第一章 緒論
1.1 壓縮機簡介----------------------------------------------1
1.2 研究動機------------------------------------------------3
1.3 壓縮機分類----------------------------------------------4
1.4 文獻回顧-----------------------------------------------11
1.5 研究目的-----------------------------------------------15
1.6 研究方法-----------------------------------------------16
1.7 章節編排-----------------------------------------------17

第二章 壓縮機之設計
2.1 壓縮機概念的產生---------------------------------------18
2.2 葉片的設計---------------------------------------------23
2.3 凸輪盤之凸輪導槽輪廓與轉子輪廓之設計-------------------27
2.4 凸輪盤之凸輪導槽輪廓與轉子輪廓之曲線分析---------------33
2.5 凸輪盤之凸輪導槽輪廓與轉子輪廓之壓力角分析-------------37
2.6 定子的設計---------------------------------------------40

第三章 壓縮機之熱流分析
3.1 氣室體積的變化-----------------------------------------41
3.2 熱流系統之建立與理論分析之假設-------------------------45
3.3 熱流系統之平衡方程式-----------------------------------47
3.4 進氣、排氣、洩漏及熱對流過程之模擬---------------------51

第四章 壓縮機之效率分析
4.1 葉片承受負載之平衡方程式推導---------------------------61
4.2 壓縮功與摩擦功推導-------------------------------------86
4.3 效率分析-----------------------------------------------88

第五章 壓縮機之效率最佳化
5.1 最佳化目的與方法---------------------------------------89
5.2 最佳化目標函數-----------------------------------------89
5.3 最佳化變數與參數---------------------------------------90
5.4 最佳化限制條件-----------------------------------------92
5.5 最佳化流程與步驟---------------------------------------94
5.6 最佳化實例測試----------------------------------------105

第六章 實驗
6.1 實驗目的----------------------------------------------111
6.2 實驗模型----------------------------------------------111
6.3 實驗設備----------------------------------------------116
6.4 實驗步驟----------------------------------------------120

第七章 結果
7.1 最佳化實例測試結果------------------------------------121
7.2 壓縮機之最佳化結果------------------------------------126
7.3 壓縮機性能之理論與實驗結果----------------------------142
7.4 與文獻之比較------------------------------------------155

第八章 討論
8.1 理論分析的探討----------------------------------------159
8.2 最佳化結果的探討--------------------------------------161
8.3 壓縮機之葉片接觸型式的探討----------------------------167
8.4 壓縮機性能之理論與實驗結果的探討----------------------169
8.5 與文獻之比較的探討------------------------------------171

第九章 結論與建議-----------------------------------------173

參考文獻--------------------------------------------------176

附錄A 擺線曲線的定義---------------------------------------A1
附錄B 內包絡線或外包絡線的判斷-----------------------------B1
附錄C 轉子偏心力的推導-------------------------------------C1
附錄D 懲罰函數的設定---------------------------------------D1
附錄E 壓縮機實驗之輸出功率的計算---------------------------E1
[1]Suess, J., and Danfoss, 2000, “Impact of Refrigerant Fluid Properties on the Compressor Selection,” International Compressor Engineering Conference at Purdue, 3, pp. 213-220.
[2]Creux, L., 1905,“Rotary Engine,”US Patent 801182.
[3]Rune, V., and Anders, L., 1976,“Multistage Vane Type Rotary Compressor,”US Patent 3981703.
[4]Morikazu, S., 1977,“Electrical Vibration Type Compressor,”US Patent 4027211.
[5]Wayne, C., Tucson, Ariz., and Thomas, C., 1981,“Vane Type Compressor Employing Elliptical-Circular Profile,”US Patent 4299097.
[6]Teruo, N., Shinya, K., Shiro, K., and Yoshiyuki, O., 1983,“Sliding Vane Type Rotary Compressor,”US Patent 4415320.
[7]Mitsuo, I., and Hideaki, S., 1984,“Through Vane Type Rotary Compressor with Specific Chamber Configuration,”US Patent 4484873.
[8]Dammann company, 1986,“Screw Type Compressor,”US Patent 4619596.
[9]Takuho, S., Susumu, F., Sei, S., and Kazuhiro, S., 1988,“Two-Cylinder Type Rotary Compressor,”US Patent 4764097.
[10]Alfredo, P., 1993,“Shock Absorber Type Compressor,”US Patent 5226801.
[11]Kiyoshi, I., 1994,“Free Piston-Type Compressor,”US Patent 5275542.
[12]Ichiro, M., Masanori, K., Koh, I., and Makoto, Z., 2001,“Oscillation-Type Compressor,”US Patent 6203292.

[13]Matsumoto, K., Sunaga, T., Matsuura, D., and Takahashi, Y., 2002,“Rotary Compressor,”US Patent 20020150493.
[14]Yeh, S. P., 2003,“Low Power Rotation Compressor,”US Patent 20030210990.
[15]Shiina, M., 2004,“Swash Plate Compressor,”US Patent 20040103778.
[16]Colbourne, J. R., 1974,“The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps,”Mechanism and Machine Theory, 9, n. 4, pp. 421-435.
[17]Shung, J. B., and Pennock, G. R., 1994,“Geometry for Trochoidal-Type Machines with Conjugate Envelopes,”Mechanism and Machine Theory, 29, n. 1, pp. 25-42.
[18]Litvin, F. L., and Feng, P. H., 1997,“Computerized Design, Generation, and Simulation of Meshing of Rotors of Screw Compressor,”Mechanism and Machine Theory, 32, n. 2, pp. 137-160.
[19]Huang, Y. M., and Chiou, Y. F., 1998,“Performance and Dynamics of a Rotary Compressor with a Composite Stator Inner Contour,”ASME Fluids Engineering Conference, Symposium on Advances in Numerical Modeling of Aerodynamics and Hydrodynamics in Turbo Machinery, 120, pp. 1-8.
[20]Liu, T., Wu, Z. X., and Liu, Z. Q., 2004,“Study on Generating Profile with Normal-Equidistant-Curve Method for Scroll Compressor,”Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 40, n. 6, pp. 55-58.
[21]Yang, S. C., 2004,“A Mathematical Model of a CC-Type Single-Screw Compressor,”Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218, n. 4, pp. 437-448.
[22]Fukushima, T., Takao, K., and Kawashima, K., 1987,“Mathematical Model of a Rotary Vane Type Compressor,”ASHRAE Transactions, 93, n. 2, pp. 228-246.
[23]Fukuta, M., 1993,“Vane Behavior in Vane Compressors under Start-Up Operation (1st Report, Force Acting on Vane),”Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 59, n. 567, pp. 3487-3492.
[24]Fukuta, M., 1994,“Vane Behavior in Vane Compressors under Start-up Operation (2nd Report, Vane Behavior with Pressure Rise in Back Chamber),”Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 60, n. 571, pp. 879-884.
[25]李運仁, 1996,“壓縮機的多變過程分析-螺旋式與渦卷式壓縮機的分析經驗,”機械月刊, 第二十二卷, 第十期, pp. 225-232.
[26]Mimmi, G. C., and Pennacchi, P. E., 1997,“Involute Gear Pumps versus Lobe Pumps: a Comparison,”ASME Journal of Mechanical Design, 119, pp. 458-464.
[27]張鈺炯, 1997, “滑片式旋轉壓縮機的工作原理介紹,”機械月刊, 第二十三卷, 第九期, pp. 254-258.
[28]Jose, M., Jose, G., Javier, U., and Antonio, C., 2000,“Modelling of Refrigeration Piston Compressors,”International Compressor Engineering Conference at Purdue, 3, pp. 571-578.
[29]Wu, J. H., 2000,“A Mathematical Model for Internal Leakage in a Rotary Compressor,”International Compressor Engineering Conference at Purdue, 3, pp. 483-490.
[30]Huang, Y. M., and Yang, S. A., 2001,“Measurement of Air Properties for a Rotary Compressor,”Sixth SIAM Conference on Applications of Dynamical Systems, pp. 78.
[31]Abraham E., and Yunbae, K., 2003,“The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance,”ASME Journal of Fluids Engineering, 125, pp. 779-785.
[32]Dou, C. P., Yang, X. J., Tian, C. Q., and Li, X. T., 2005,“Numerical Analysis on the Performance of Control Valve in Variable Displacement Wobble Plate Compressor,”ASME Journal of Mechanical Design, 127, pp. 326-333.
[33]Huang, Y. M., and Chang, C. H., 1993,“Effect of Radial Blades and Port Location on the RCAC System,”ASME Pressure Vessels and Piping, PVP, 253, pp. 185-191.
[34]Pathy, S. K., 1994,“Dynamic Analysis of a Rotary Compressor,”ASME Journal of Mechanical Design, 116, pp. 639-646.
[35]Shu, P., Guo, B., Li, L. S., and Hu, J. H., 1998,“Influence of Vane Slot Back-Pressure on the Characteristics of Vane Motion in Rotary Vane Compressor,”International Compressor Engineering Conference at Purdue, 2, pp. 415-421.
[36]Huang, Y. M., Chang, Y. Z., Yang, S. A., and Li, C. L., 2003,“Design of Compressor Sliding Vanes and Guider Slots on Covered Plates,”SAE International SP-1744, CI and SI Power Cylinder Systems, pp. 101-108.
[37]Gui, F., Rahman, M. M., and Scaringe, R. P., 1993,“Development of Compact, Lightweight, High-Performance Sliding-Vane Rotary Compressors for Heat Pump Applications,”Proceedings of the 28th intersociety Energy Conversion Engineering Conference, 1, pp. 885-890.
[38]Marco, R. B., Renzo C., Giovanni, L., and Embraco, E. S., 2000,“Optimization of the Compressor Efficiency:a DOE Approach,”International Compressor Engineering Conference at Purdue, 3, pp. 507-514.
[39]Hubert, B., 2000,“Optimum Piston-Bore Fit for Maximum Compressor Efficiency,”International Compressor Engineering Conference at Purdue, 3, pp. 523-530.
[40]Su, S. H., and Tseng, C. H., 2000,“Synthesis and Optimization for Rotor Profiles in Twin Rotor Screw Compressors,”ASME Journal of Mechanical Design, 122, pp. 543-552.
[41]Huang, Y. M. and Tasy, S. N., 2001,“Design of a Rotary Vane Compressor by Genetic Algorithms,”ASME Fall Technical Conference, 37-3, pp. 161-168.
[42]Chen, L. G., Luo, J., Sun, F. G., and Wu, C., 2004,“Optimum Design of a Subsonic Axial-Flow Compressor Stage,”Applied Energy, 80, n. 2, pp. 187-195.
[43]Chen, L. G., Luo, J., Sun, F. G., and Wu, C., 2005,“Optimized Efficiency Axial-Flow Compressor,”Applied Energy, 81, n. 4, pp. 409-419.
[44]利建良, 2003, 旋轉式壓縮機葉片之應力與疲勞分析, 國立台灣大學機械工程學研究所碩士論文.
[45]鍾震聲, 2001, 單一滑動葉片旋轉式壓縮機之研究, 國立台灣大學機械工程學研究所碩士論文.
[46]顏鴻森, 1999, 機構學, 台灣東華書局股份有限公司, 第二版.
[47]O’neil, P. V., 1991, Advanced Engineering Mathematics, Wadsworth Publishing Company.
[48]Norton, R. L., 1999, Design of Machinery, McGraw-Hill Companies, Inc.
[49]Streeter, V. L., Wylie, E. B., and Bedford, K. W., 1998, Fluid Mechanics, McGraw-Hill Companies, Inc.
[50]Evett, J. B., 1989, Fluid Mechanics and Hydrau lics, McGraw-Hill Companies, Inc.
[51]Li, S. G., and Shung, J. B., 1996,“Geometry and Pressure in a Trochoidal-Type Machine without Apex Seal,”ASME Journal of Mechanical Design, 118, pp. 209-213.
[52]Holman, J. P., 1997, Heat Transfer, McGraw-Hill Companies, Inc.
[53]Cengel, Y. A., 2000, Heat Transfer, McGraw-Hill Companies, Inc.
[54]Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, MIT Press.
[55]小栗富士雄, 小栗達男, 1998, 機械設計圖表便覽, 眾文圖書股份有限公司, 增訂三版四刷.
[56]Dasgupta, D., and Michalewicz, Z., 1997, Evolutionary Algorithms in Engineering Applications, Springer-Verlag, Berlin.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top