(3.227.235.183) 您好!臺灣時間:2021/04/18 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡斯遠
研究生(外文):Ssu-yuan Hu
論文名稱:新型流道式風力發電機組之研發設計
論文名稱(外文):Innovatory Designs for Ducted Wind Turbines
指導教授:鄭榮和
指導教授(外文):Jung-Ho Cheng
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:185
中文關鍵詞:流道式風機最佳化計算流體動力學風力發電再生能源
外文關鍵詞:ducted wind turbinesoptimizationCFDwind powerrenewable energy
相關次數:
  • 被引用被引用:9
  • 點閱點閱:410
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
  傳統流道式風機設計原理主要為增加入口截面積以提高氣流量,然而提升風速才是真正提高空氣動能的有效方式。本研究發現,桶形流道利用 Bernoulli 原理造成抽吸效應,可有效地提高流道內的氣流速度,並藉此提升風機效率。本研究更進一步改良固有的Complex演算法,並配合物件導向的最佳化程式介面,以及計算流體力學軟體模擬,對流道幾何外型進行最佳化設計。根據最佳化結果顯示,最適合此桶型流道的內部幾何形狀為一非傳統噴嘴,在最佳情況下可將氣流速度提升60% 以上。

  以配備此最佳化噴嘴之桶型流道為基礎,本研究成功設計並製造出一部流道式風力發電機組,並經過CFD模擬及實地測試,證明確實能改善風機的工作流場,並將風機的動能擷取效率提高約80%。
  Designs for conventional ducted wind turbines usually include a large inlet for more absorption of the air flow. However, the most efficient solution should be increasing the speed of wind. It has been observed that a bucket-shaped duct produces a sucking effect according to the Bernoulli’s Theorem, and thus significantly increases the wind speed inside the duct, while the efficiency of the wind turbine can be substantially enhanced. Moreover, the geometry of the duct is optimized by the combination of an improved Complex algorithm, an object-oriented optimizing program interface, and the simulations by CFD software. According to our studies, the optimal shape for the interior of the duct appears to be an unconventional nozzle, which extends the range of wind speed by 60%.

  Based on this bucket duct equipped with the optimal nozzle, a wind power generator has been practically designed and constructed. The results of the field tests show that the proposed ducted turbine does improve the flow around the generator and thus increase its power extraction efficiency by about 80%.
誌 謝 0-1
摘 要 0-2
目 錄 0-4

第一章 緒論
1. 1. 風力發電概論 1-1
 1. 1. 1. 風力資源特徵 1-2
 1. 1. 2. 風力機簡介 1-3
 1. 1. 3. 風力機空氣動力學 1-8
 1. 1. 4. 風力機設計原理 1-10
 1. 1. 5. 風力機定址選擇 1-16
 1. 1. 6. 風力發電之經濟考量 1-17
 1. 1. 7. 風力發電之環境衝擊 1-19
 1. 1. 8. 總結 1-21
1. 2. 研究動機與目的 1-21
1. 3. 研究內容與方法 1-26
1. 4. 使用軟體簡介 1-29
1. 5. 論文內容架構 1-33

第二章 文獻回顧
2. 1. 流道式風機 2-1
2. 2. 最佳化演算法 2-8
2. 3. 最佳化外型設計 2-13
2. 4. 其他相關文獻 2-14
 2. 4. 1. 最佳化程式 2-14
 2. 4. 2. 風機定址 2-16
2. 5. 討論 2-19

第三章 理論背景
3. 1. 驅動盤概念 (Actuator Disc Concept) 3-1
3. 2. 轉子盤理論 (Rotor Disc Theory) 3-4
3. 3. 轉子葉片理論 (Rotor Blade Theory) 3-8
3. 4. 流體力學基本概念 3-14
3. 5. 討論 3-17

第四章 流道之 CAE 模型建構
4. 1. 桶型流道之 CFD 模型 4-1
 4. 1. 1. 基本假設 4-1
 4. 1. 2. 幾何外型建立 4-2
 4. 1. 3. 幾何參數討論 4-5
 4. 1. 4. 模擬結果討論 4-8
4. 2. 流道支架之 FEM 模型 4-16
 4. 2. 1. 基本模型架構 4-17
 4. 2. 2. 元素選用與網格分割 4-23
 4. 2. 3. 邊界條件與分析程序 4-24
 4. 2. 4. 材料常數 4-27
 4. 2. 5. 分析結果與討論 4-27
4. 3. 討論 4-29

第五章 流道外型最佳化設計
5. 1. 目標函數 5-1
5. 2. 演算法之改良 5-4
 5. 2. 1. 鎖死過程解析 5-5
 5. 2. 2. 預鎖警告 5-6
 5. 2. 3. 遜位機制 5-7
 5. 2. 4. 彈性節點數 5-8
 5. 2. 5. 標準測試函數 5-9
 5. 2. 6. 效率比較指標 5-12
 5. 2. 7. 新舊演算法之結果比較 5-13
 5. 2. 8. 與其它解鎖機制之比較 5-17
 5. 2. 9. 結論 5-19
5. 3. 最佳化問題計算 5-20
5. 4. 最佳化外型設計結果 5-22
5. 5. 結論 5-25

第六章 流道式風機架構
6. 1. 固定組各部件設計 6-1
6. 2. 可動組各部件設計 6-4
6. 3. 流道式風機之最終設計 6-13
6. 4. 設計之檢查與驗證 6-14

第七章 製造程序與實驗驗證
7. 1. 製造程序 7-1
 7. 1. 1. 支架 7-1
 7. 1. 2. 噴嘴 7-1
 7. 1. 3. 發電機 7-6
 7. 1. 4. 鐵籠主體 7-8
 7. 1. 5. 尾翼與布幕 7-9
 7. 1. 6. 組裝與配合 7-9
7. 2. 實驗裝置架設 7-10
7. 3. 結果與討論 7-12

第八章 總結、討論與建議
8. 1. 成果總結 8-1
8. 2. 研究與討論 8-2
8. 3. 未來研究方向 8-3

附錄
A. 程式架構 / 自動產生不同高度比之CFD網格: 附-1
B. 程式架構 / cubic spline計算: 附-3
C. 程式架構 / 自動產生不同噴嘴外型之CFD網格: 附-6
D. 程式架構 / Fluent軟體溝通介面 附-8

參考文獻 參-1
[1] 鐘翼能、邱清泉,“臺灣地區推廣太陽能發電系統之研究”,大葉大學電機工程學系碩士論文,2003。
[2] 吳旭晉、李建興,“以遺傳演算法與模擬退火法計算固定式太陽電池板之最佳安裝角度”,義守大學電機工程學系碩士論文,2001。
[3] M. R. Patel, “Wind and Solar Power Systems,” CRC Press, p. 7, 1999.
[4] 黃昌圳,林顯宗,“小容量風力發電機的研製”,逢甲大學電機工程研究所碩士論文,2002。
[5] 台灣因應氣候變化綱要公約資訊網,http://www.tri.org.tw/unfccc/。
[6] 中國太陽能學會網頁,http://www.cses.org.cn/。
[7] 環境資訊中心網頁,http://news2.ngo.org.tw/php/ens.php?id=05031001。
[8] 中國學習時報網頁,http://big5.china.com.cn/chinese/zhuanti/xxsb/602457.htm。
[9] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, pp. 11-12, 2001.
[10] “空氣動力學簡史”,人民教育出版社,http://www.pep.com.cn。
[11] Y. Onai and I. Ushiyama, “An experimental study of the windmill of solar cell buckets,” WREC 1996, pp. 905-908, 1996.
[12] 德國國際再生能源網站,http://www.iwr.de/wind/tech/。
[13] 美國密蘇里州立大學網頁,http://muextension.missouri.edu/xplor/agguides/agengin/g01981.htm。
[14] 賴耿陽,“小型風車設計及製造”,復漢出版社,2001。
[15] P. Gipe, “Wind Energy Basics,” Chelsea Green Publishing Company, pp. 38-40, 1999.
[16] 再生能源線上字典,http://sleekfreak.ath.cx:81/3wdev/VITAHTML/SUBLEV/EN1/RENENRGY.HTM。
[17] 歐洲能源研究網頁,http://europa.eu.int/comm/research/energy/nn/nn_rt/nn_rt_wind/article_1101_en.htm。
[18] 黃恆倫,郭誌原,“風力發電之網路連接動態模擬”,國立中山大學電機工程研究所碩士論文,2004。
[19] 美商PowerHouse網頁,http://www.powerhousetv.com/。
[20] J. F. Manwell, J. G. McGowan and A. L. Rogers, “Wind Energy Explained: theory, design and application,” John Wiley & Sons, Ltd, p. 83, 2002.
[21] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, p. 42, 2001.
[22] J. F. Manwell, J. G. McGowan and A. L. Rogers, “Wind Energy Explained: theory, design and application,” John Wiley & Sons, Ltd, pp. 247-252, 2002.
[23] M. R. Patel, “Wind and Solar Power Systems,” CRC Press, p. 40, 1999.
[24] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, pp. 175-176, 2001.
[25] S. A. Grady, M. Y. Hussaini and M. M. Abdullah, “Placement of wind turbines using genetic algorithms,” Renewable Energy, Vol.30, pp. 259-270, 2005.
[26] 德商英華威公司網頁,http://www.infra-vest.com。
[27] M. R. Patel, “Wind and Solar Power Systems,” CRC Press, pp. 273-275, 1999.
[28] C. Arakawa, “Proposal of vernacular design for wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 1731-1741, 2002.
[29] 盧展南、尤森驗,“分散式電源之成本效益評估”,國立中山大學電機工程研究所碩士論文,2003。
[30] 呂孜斌、蘇艾,“商業化發電系統應用於沼氣,裂解油,氣化燃氣之調控,測試及效益研究”,元智大學機械工程研究所碩士論文,2001。
[31] OPEC (石油輸出國組織) 2003 年公報,新華社新聞。
[32] 經濟部能源局網頁,http://www.moeaboe.gov.tw,2000年1月~2005年6月間年平均值。
[33] 盧展南,郭誌原,“風力發電與電力系統併聯影響研究”,國立中山大學電機工程研究所碩士論文,2004。
[34] “再生能源電能收購作業要點”,台灣電力公司,2002。
[35] “工業溫室氣體減量發展簡訊”,經濟部工業局,Vol. 10,2004。
[36] 鄭榮和、林敬淵,“被動式可變節距角風力機葉片設計分析”,國立台灣大學機械工程研究所碩士論文,2003。
[37] Asaf Varol, Yasin Varol, “Increasing the efficiency of wind turbines,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp. 809-815, 2001.
[38] 鄭榮和、胡斯遠,“物件導向之工業最佳化軟體介面發展”,九十三學年度教育部補助論文集,2004。
[39] J. F. Manwell, J. G. McGowan and A. L. Rogers, “Wind Energy Explained: theory, design and application,” John Wiley & Sons, Ltd, pp. 9-10, 2002.
[40] F. Bet, H. Grassmann, “Upgrading conventional wind turbines,” Renewable Energy, Vol. 28, pp. 71-78, 2003.
[41] R. K. W. Dannecker and A. D. Grant, “Investigations of a Building-Integrated Ducted Wind Turbine Module,” Wind Energy, Vol. 5, pp. 53-71, 2002.
[42] B. Frankovic and I. Vrsalovic, “New high profitable wind turbines,” Renewable Energy, Vol. 24, pp. 491-499, 2001.
[43] C. J. Lawn, “Optimization of the power output from ducted turbines,” Journal of Power and Energy, Vol. 217, pp. 107-117, 2003.
[44] H. Grassmann, F. Bet, M. Ceschia and M. L. Ganis, “On the physics of partially static turbines,” Renewable Energy, Vol. 29, pp. 491-499, 2003
[45] H. Grassmann, F. Bet, G. Cabras, M. Ceschia, D. Cobai and C. DelPapa, “A partially static turbine - first experimental results,” Renewable Energy, Vol. 28, pp. 1779-1785, 2003.
[46] P. Gipe, “Wind Energy Basics,” Chelsea Green Publishing Company, p. 7, 1999.
[47] 顏瑞和、鄭敬樺,“太陽能車於測風下之穩定性分析”,國立台灣大學機械工程研究所碩士論文,2003。
[48] H. Naceur, A. Delaméziere, J. L. Batoz, Y. Q. Guo and C. Knopf-Lenoir, “Some improvements on the optimum process design in deep drawing using the inverse approach,” Journal of Materials Processing Technology, Vol. 146, pp. 250-262, 2004.
[49] R. Le Riche & J. Gaudin, “An object-oriented simulation–optimization interface,” Computers and Structures, Vol. 81, No. 1, pp. 1689-1701, 2003.
[50] I. Maros and M. H. Khaliq, “Advances in design and implementation of optimization software,” European Journal of Operational Research, Vol. 140, pp. 322-337, 2002.
[51] Ssu-yuan Hu and Jung-Ho Cheng, “Development of an Object-oriented Optimization Software for Industrial Utilization,” proceedings of the 4th conference of OPTDES, 2004.
[52] 鄭榮和、游信源,“齒輪幫浦振動噪音研究與減制”,國立台灣大學機械工程研究所碩士論文,2002。
[53] 鄭榮和、黃承照,“粉末鍛造成破壞判準及燒結預形尺寸設計”,國立台灣大學機械工程研究所博士論文,2002。
[54] 鄭榮和、陳季暉,“輪胎模具最佳化逆向設計”,國立台灣大學機械工程研究所碩士論文,2004。
[55] 鄭榮和、黃偉誠,“氣渦機組件矯形程序最佳化”,國立台灣大學機械工程研究所碩士論文,2002。
[56] G. W. Webster, “Devices for utilizing the power of the wind,” US Patent 4154556, 1979.
[57] 蘇黎世 Sulzer Hydro Ltd. 公司網頁,http://www.scsc.ethz.ch/SV/turbo。
[58] M. O. L. Hansen, N. N. Sørensen, R. G. J. Flay, “Effect of Placing a Diffuser around a Wind Turbine,” Wind Energy, Vol. 3, pp. 207-213, 2000.
[59] W. Spendley, G. R. Hext and F. R. Himsworth, “Sequential applications of simplex designs in optimization and evolutionary operation,” Technometrics, Vol. 4, pp. 441-461, 1962.
[60] M. J. Box, “A new method of constrained optimization and a comparison with other methods,” The Computer Journal, Vol. 8, pp. 42-52, 1965.
[61] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, Vol. 7, pp. 308-313, 1965.
[62] Y. Huang and W. F. McColl, “An Improved Simplex Method for Function Minimization,” Systems, Man, and Cybernetics, Vol. 3, pp. 1702-1705, 1996.
[63] J. Yen, “A Hybrid Approach to Modeling Metabolic Systems Using a Genetic Algorithm and Simplex Method,” IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, Vol. 28, No. 2, pp. 173-191, 1998.
[64] J. B. Vance, F. P. Hassani and P. Mottahed, “Improved Determination of Microseismic Source Location Using a Simplex Technique,” IEEE Transactions on Industry Applications, Vol. 24, No. 4, pp. 666-671, 1988.
[65] M. E. Al-Mualla, C. N. Canagarajah and D. R. Bull, “Simplex minimization for fast long-term memory motion estimation,” Electronics Letters, Vol. 37, No. 5, pp. 290-292, 2001.
[66] T. Öberg, “Importance of the first design matrix in experimental simplex optimization,” Chemometrics and Intelligent Laboratory Systems, Vol. 44, pp. 147-151, 1998.
[67] M. J. Santos-Delgado, E. Crespo-Corral and L. M. Polo Díez, “Determination of herbicides in soil samples by gas chromatography: optimization by the simplex method,” Talanta, Vol. 53, pp. 367-377, 2000.
[68] L. Tsao and C. Liu, “A Comparison between Two Optimization Methods on the Stacking Sequence of Fiber-Reinforced Composite Laminate,” Computers and Structures, Vol. 55, No. 3, pp. 515-525, 1995.
[69] D. Wang, B. Hu, Q. Peng, and Y. Tan, “BSP-based Parallel Simplex Method,” Proceedings of the Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, Vol. 2, pp. 635-639, 2000.
[70] H. Y. Song and S. W. Golomb, “Some New Constructions for Simplex Codes,” IEEE Transactions on Information Theory, Vol. 40, No. 2, pp. 504-507, 1994.
[71] S. Smith, “The Simplex Method and Evolutionary Algorithms,” The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 799-804, 1998.
[72] G. Seront and H. Bersini, “Simplex GA and Hybrid Methods,” Proceedings of IEEE International Conference on Evolutionary Computation, pp. 845-848, 1996.
[73] N. V. Stojković and P. S. Staniviromić, “Two direct methods in linear programming,” European Journal of Operational Research, Vol. 131, pp. 417-439, 2001.
[74] B. Bunday, “Basic Optimisation Methods,” Edward Arnold, pp.98-107, 1984.
[75] Ssu-yuan Hu and Jung-Ho Cheng, “Development of the Unlocking Mechanisms for the Complex Method,” to appear in the Computers and Structures, 2005.
[76] P. E. Gill and W. Murray, “Numerical Methods for Constrained Optimization,” Academic Press, 1974.
[77] Van der Wiel, R. Maassen and G. Kateman, “The symmetry-controlled simplex optimization procedure,” Analytica Chimica Acta, Vol. 153, pp. 83-92, 1983.
[78] P. Hedlund and A. Gustavsson, “Design and evaluation of an effective modified simplex method,” Analytica Chimica Acta, Vol. 391, pp. 257-267, 1999.
[79] Y. M. Xie and G. P. Steven, “A Simple Evolutionary Procedure for Structural Optimization,” Computers & Structures, Vol. 49, pp. 885-896, 1993.
[80] X. Duan and T. Sheppard, “Shape optimization using FEA software: a V-shaped anvil as an example,” Journal of Materials Processing Technology, Vol. 120, pp. 426-431, 2002.
[81] X. Wang and M. Damodaran, “Optimal Three-Dimensional Nozzle Shape Design Using CFD and Parallel Simulated Annealing,” Journal of Propulsion and Power, Vol. 18, pp. 217-221, 2002.
[82] 鄭榮和、胡斯遠、黃偉誠,“最佳化軟體介面之規劃”,第七屆 ABAQUS Users'' Conference,2002。
[83] G. Collaud, “A hypertext environment for linear optimization,” Decision Support Systems, Vol. 23, pp. 111-131, 1998
[84] J. H. Shin and B. M. Kwak, “Optimal Design Markup Language as a new interface standard for design processes,” Computer Standards & Interfaces, Vol. 26, pp. 357-370, 2004.
[85] D. A. Haralambopoulos, “Analysis of wind characteristics and potential in the East Mediterranean – the Lesvos case,” Renewable Energy, Vol. 6, No. 4, pp. 445-454, 1995.
[86] R. Pallabazzer, “Evaluation of wind-generator potentiality,” Solar Energy, Vol. 55, pp.49-59, 1995.
[87] R. J. Barthelmie and J. P. Palutikof, “Coastal wind speed modeling for wind energy applications,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 62, pp. 213-236, 1996.
[88] R. Pallabazzer, “Parametric analysis of wind siting efficiency,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, pp. 1329-1352, 2003.
[89] R. Pallabazzer, “Previsional estimation of the energy output of windgenerators,” Renewable Energy, Vol. 29, pp. 413-420, 2004.
[90] A. Garcia, J. L. Torres, E. Prieto and A. De Francisco, “Fitting wind speed distributions: a case study,” Solar Energy, Vol. 62, pp. 139-144, 1998.
[91] M. J. M. Stevens and P. T. Smulders, “The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes,” Wind Engineering, Vol. 3, pp. 132-145, 1979.
[92] R. Pallabazzer and A. M. Sebbit, “The wind resources in Uganda,” Renewable Energy, Vol. 13, No. 1, pp. 41-49, 1998.
[93] R. Pallabazzer, “Evaluation of wind-generator potentiality,” Solar Energy, Vol. 55, No. 1, pp. 49-59, 1995.
[94] H. P. Frank and E. L. Peterson, “Calculations on the Wind Climate in Northern Finland: the Importance of Inversions and Roughness Variations during the Seasons,” Wind Energy, Vol. 2, pp. 113-123, 1999.
[95] M. S. Wang and W. K. Kwan, “Wind Statistics in Hong Kong in Relation to Wind Power,” Hong Kong Observatory Technical Note, No. 77, p. 29, 2002.
[96] A. S. S. Dorvlo, “Estimating wind speed distribution,” Energy Conversion & Management, Vol. 43, pp. 2311-2318, 2002.
[97] Ssu-yuan Hu and Jung-Ho Cheng, “Performance Evaluation of Pairing between Sites and Wind Turbines,” submitted to the Renewable Energy, 2005.
[98] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, pp. 42-45, 2001.
[99] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, pp. 46-58, 2001.
[100] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook,” John Wiley & Sons, Ltd, pp. 59-65, 2001.
[101] I. G. Currie, “Fundamental Mechanics of Fluids,” McGraw-Hill, pp. 138-179, 1993.
[102] 顏瑞和、文黃瑋,“台大機械系太陽能車之外型研究分析”,國立台灣大學機械工程研究所碩士論文,2002。
[103] 張倉榮、游家信,“自然通風空間空氣交換有效性與氣狀污染物排除效率之數值研究”,國立台灣大學生物環境系統工程研究所碩士論文,2003。
[104] 日本神戶海洋氣象台網頁,http://www.kobe-jma.go.jp/Kishou/Chijhou/Fuko_Fusoku.html。
[105] P. V. O’Neil, “Advanced Engineering Mathematics,” PWS Publishing Company, 4th Edition, 1995.
[106] A. Gustavsson and J. E. Sundkvist, “Design and optimization of modified simplex methods,” Analytica Chimica Acta, Vol. 167, pp. 1-10, 1985.
[107] P. Hedlund and A. Gustavsson, “Design and evaluation of an improved simplex method,” Analytica Chimica Acta, Vol. 371, pp. 9-21, 1998.
[108] A. K. Wright and D. H. Wood, “The starting and low wind speed behaviour of a small horizontal axis wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 92, pp. 1265-1279, 2004.
[109] 台灣泰儀公司網頁,http://www.prova.com.tw/C_AVM_05_07.html。
[110] 陳耀銘、林聖賢,“市電併聯型太陽能與風能發電系統研製”,國立中正大學電機工程研究所碩士論文,2003。
[111] A. Miller, E. Muljadi and D. S. Zinger, “A Variable Speed Wind Turbine Power Control,” IEEE Transactions on Energy Conversion, Vol. 12, No. 2, pp. 181-186, 1997.
[112] J. K. Kaldellis, K. Kavadias and E. Christinikis, “Evaluation of the Wind-hydro Energy Solution for Remote Islands,” Energy Conversion and Management, Vol. 42, pp. 1105-1120, 2001.
[113] W. Isherwood, J. R. Smith and S. M. Aceves, “Remote Power Systems with Advanced Storage Technologies for Alaskan Villages,” Energy, Vol. 25, pp. 1005-1020, 2000.
[114] W. S. Chepil and N. P. Woodruff, “The physics of wind erosion and its control,” Advances in Agronomy, Vol. 15, pp. 211-302, 1963.
[115] W. M. Cornelis and D. Gabriels, “Optimal Windbreak Design for Wind-erosion Control,” Journal of Arid Environments, Vol. 61, pp. 315-332, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔