(100.26.179.251) 您好!臺灣時間:2021/04/12 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉秉翰
研究生(外文):Bing-Han Liu
論文名稱:高分子毛細結構在迴路式熱管之應用研究
論文名稱(外文):Investigation of the Polymer Wick Structure Applied to Loop Heat Pipe
指導教授:陳瑤明
指導教授(外文):Yau-Ming Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:88
中文關鍵詞:鹽溶濾法高分子毛細結構迴路式熱管
外文關鍵詞:salt leachingpolymer wickloop heat pipe
相關次數:
  • 被引用被引用:5
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子毛細結構具有高孔隙度、低熱導係數等優點,而目前將高分子毛細結構應用於迴路式熱管的相關研究並不多見,因此本文旨在建立可應用於迴路式熱管高分子毛細結構之設計、製造及測試能力。依照迴路式熱管在操作時的限制與特性,選擇聚甲基丙酸甲酯作為毛細結構的材料,以鹽溶濾法(salt leaching)來製作高分子毛細結構。製作過程中遭遇到加工等問題,在文中提供一個較佳的解決方式。在製作出高分子毛細結構後,我們建立了一套冷態測試系統,用來量測其各項參數包括有效孔徑與滲透度,以預測其熱傳性能。
本實驗經由實際量測以鹽溶濾法製作出來的聚甲基丙酸甲酯毛細結構,其機械強度與耐熱性皆優於聚苯乙烯,有效孔徑約在14 ,孔隙度可控制在50~82%,綜整不同孔隙度的高分子毛細結構其滲透度後,找出滲透度與孔隙度相關的經驗公式,Kw=2.0×10^-10×ε^15.64,有助迴路式熱管的熱傳性能預測。
Polymer wick structure has the advantages that include high porosity, low thermal conductivity coefficient and lower manufacturing cost etc. However the relative researches on applying the polymer wick structure to LHP is still not familiar to date. Hence, the present effort seeks to set up the design, fabrication and test capacity of the polymer wick which is applicable to LHP. Based on the operating limitation and characteristics of LHP, poly-metyl methacrylate is chosen as the material and the polymer wick structure is fabricated by salt leaching method. Besides, after the polymer wick structure is made, the wick parameters that include pore radius and permeability are measured. The wick test system was made by our self .its help the prediction of the heat transfer.

The testing results show that, the arithmetic average pore diameter is 14 , and the porosity can be controlled within the range of 50~82%. Summarizing the dependent permeability of the polymer wicks upon different porosities, an empirical equation between permeability and porosity expressed as Kw=2.0×10^-10×ε^15.64 is established. This equation would help the prediction of the heat transfer capacity of LHP.
誌 謝 I
中文摘要 III
Abstract IV
符號說明 V
目錄 XII
圖目錄 XII
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2 文獻回顧 6
1.3研究目的 13
第二章 實驗原理及理論分析 14
2.1迴路式熱管操作原理 14
2.1.1毛細限制 16
2.1.2啟動限制 16
2.1.3液體過冷度限制 17
2.2理論分析 17
2.2.1流動壓降分析 17
2.2.1.1 液-汽介面之毛細壓差 18
2.2.1.2 蒸發器溝槽內蒸汽流動壓降 18
2.2.1.3 汽體段流動壓降 19
2.2.1.4 流經毛細結構之壓降 20
2.2.1.5 液體段及冷凝段流動壓降 21
2.2.1.6 重力壓降 22
2.2.2熱阻分析 23
2.2.2.1蒸發器熱阻 23
2.2.2.2冷凝器熱阻 26
2.2.3工質注入量 27
第三章 實驗設備與方法 28
3.1迴路式熱管之設計 28
3.2製造系統 29
3.2.1高分子毛細結構製造系統 29
3.2.2高分子毛細結構製造實驗材料 31
3.2.3迴路式熱管製造系統 31
3.3測試系統 32
3.4實驗步驟 35
3.4.1高分子毛細結構製作步驟 35
3.4.2迴路式熱管熱傳性能測試步驟 35
3.4.2.1迴路式熱管安裝過程 36
3.4.2.2工質注入系統之製作 37
3.4.2.3工質注入 38
3.4.2.4熱性能測試步驟 39
3.5誤差分析 39
3.6實驗參數 43
第四章 結果與討論 44
4.1工質之選擇 44
4.2高分子毛細結構 46
4.2.1高分子毛細結構製作方式之選擇 46
4.2.1.1鹽溶濾法 48
4.2.1.1粉末燒結 51
4.2.2高分子材料之選擇 51
4.2.3溶劑之選擇 52
4.2.4非溶劑之選擇 54
4.2.5高分子製作過程產生的效應 55
4.2.5.1分子量及溶劑效應 55
4.2.5.2溫度效應 56
4.2.5.3壓力效應 57
4.2.6高分子毛細結構之製作 57
4.3高分子毛細結構各項參數測試 64
4.3.1孔隙度 64
4.3.2有效孔徑 66
4.3.3滲透度 70
第五章 結論 77
建議 78
參考文獻 79
附錄 84
Chun-Jen Liao, Chin-Fu Chen, Jui-Hsiang Chen, Shu-Fung Chiang, Yu-Ju Lin, Ken-Yuan Chang, “Fabriction of Porous biodegradable Polymer Scaffolds Using a Solvent Merging/Particulate Leaching Method,” John Wiley & Sons, Inc., pp.676-681, 2001.

Cheung, K. H., Hoang, T. T., Ku. J. and Kaya, T., “Thermal Performance and Opera- tional Characteristics of Loop Heat Pipe (NRL LHP),” SAE Paper No. 981813, 1998.

Chi, S. W., “Heat Pipe Theory and Practice,” McGraw-Hill, New York,1976.

Christoph B., “Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications,” Society of Automotive Engineers, Paper 2000-01-2319, 2000.

Dunn, P.D., and Reay, D.A., “Heat Pipes,” Pergamon Press, Oxford, 1994.

Faghri, A., “Heat Pipe Science and Technology,” Taylor & Francis, Washington, DC. 1995.

German, “Powder Metallurgy Science” Metal Powder Industries Federation, 1984.

Gluck, D., Gerhart, C., and Stanley, S., “Characterizztion of a High Capacity, Dual Compensation Chamber Loop Heat Pipe,” Space Technology and Applications
International Forum, The American Institute of Physics, pp.943-948, 1999.


Hoang, T. T., and Kaya, T., “Mathematical Modeling of Loop Heat Pipes,” AIAA
Paper No.99-0477, 1999.

Holman J. P. “Heat Transfer,” 8th McGraw-Hill, New York,1997.

Kaya, T. and Ku, J., “A Parametric Study of Performance Characteristics of Loop Heat Pipe,” SAE Paper No. 1999-01-2006, pp.496-502, 1999.a

Kaya, T. et al., “Investigation of Low Power Start-Up Characteristics of A Loop Heat Pipe,” NASA GSFC, Space Technology and Applications International Forum,1999.b

Kaya, T., Ku, J., Hoang, T. T., and Cheung, M. K., “Investigation of Low Power Start-Up Characteristics of A Loop Heat Pipe,” Space Technology and Applications International Forum, American Institute of Physics, New York, 1999.c

Kaya, T., Baker, C., and Ku, J., “Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes,” SAE Paper No.2000-01-2406, pp. 580-586, 2000.

Kaya T. and Jentung Ku, “Thermal Operational Characteristics of a Small-Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol.17 No.4 October-December 2003.

Kim, J., and Golliher, E., “Steady State Model of a Micro Loop Heat Pipe,” 18th IEEE SEMI-THERM Symposium, pp.137-144, 2002.

Khrustalev, D., “Loop Heat Pipe Technology for Electronics Cooling,” Proceedings of SPIE, International Conference on High-Density Interconnect and SystemsPackaging, Vol.4428, pp.375-380, 2001.

Kobayashi Takashi, Tetsurou Ogushi, Seiji Haga, Eiichi Ozaki, and Masao Fujii, “Heat Transfer Performance of a Flexible Looped Heat Pipe Using R134a as a Working Fluid: Proposal for Method to Predict the Maximum Heat Transfer Rate of FLHP,” Heat Transfer-Asian Research, 32(4), pp.306-318, 2003.

Ku, J., “Operating Characteristics of Loop Heat Pipes,” SAE Paper No.1999, pp.503-519, 1999.

Ku, J., Rogers, P., and Cheung, K., “Investigation of Low Power Operation in a Loop Heat Pipe,” SAE Paper No.2001-01-2192, 2001.

Litovitz T. A., and Macedo P. B., Physics of Non-Crystalline Solids, J. Dprin, ed., Inter. Sci., 200, 1965.

McCollam et al. United States Patent, Patent Number: 6,143,675, Date of Patent: Nov.7, 2000

Maidanik, Y. f., Fershtater, Y. G., and Solodovnik, N. N., “Loop Heat Pipes:Design,Investigation, Prospects of Use in Aerospace Technics,” SAE Paper No.941185,1994.

Maidanik, Y. F., Pastukhov, V. G. and Chernyshova, M. A., “Development and Investigation of Miniature Loop Heat Pipe,” SAE Paper No.1999-01-1983, pp.483-487, 1999.

Maidanik, Y. F., Vershinin, S. V., and Chernysheva, M. A., “Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator,” SAE Paper No.2000-01-2491, pp.652-656, 2000.

Maidanik, Y. F., Vershinin, S., Kholodov, V., and Dolgirev, J., “Heat Transfer Apparatus,” US Patent, No.4515209, May 7, 1985.

Mikos Antonios G., Yuan Bao, Linda G. Cima, Donald E. Ingber, Joseph P. Vacanti and Robert Langer, “Preparation of Poly(glycolic acid) Bonded Fiber Structures for cell attachment and transplantation,” Journal of Biomedical Materials Research, Vol.27, pp.183-189, 1993.

Mikos Antonios G., Amy J. Thorsen, Lisa A. Czerwonka, Yuan Bao, Robert Langer, Douglas N. Winslow and Joseph P. Vacanti, “Preparation and Characterization of Poly(L-lactic acid) Foams,” POLYMER, Volume 35, Number 5, pp.1068-1077, 1994.

Muraoka, I., Ramos, F. M., and Vlassov, V. V., “Analysis of the operational characte- ristics and limits of a loop heat pipe with porous element in the condenser,” Internati- onal Journal of Heat and Mass Transfer, Vol.44, pp.2287-2297, 2001.

Maydanik, Y. F., ”Review Loop Heat Pipes,” Applied Thermal Engineering 25 (2005) 635-657

Nielsen L.E., Mechanical Properties of Polymers and Composites, Vol. 1, Marcel Dekker, New York, 1974.

Nielsen L.E., Polymer Rheology, Marcel Dekker, New York, 1977.

Neison J. G., Gregg J. B. and Joseph M. G. “Fine Pore Loop Heat Pipe Wick Structure Development,” SAE Paper No.961319, 1996.

Nikitkin, M., and Bienert, W. B., “Non-Condensable Gases and Loop Heat Pipe Oper- ation ,” SAE Paper No.981854, pp.394-399, 1998.

Qingpu Hou, Dirk W. Grijpma and Jan Feijen “Porous Polymeric Structures for Tissue Engineering Prepared by a Coagulation, Compression Moulding and Salt Leaching Technique,” Biomaterials, 24, pp1937-1947, 2003.

Rodriguez, J. I., and Na-Nakornpanom, A., “Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe,” SAE Paper No.2001-01-2235, 2001.

Schlitt, R., “Performance characteristics of Recently Developed High-Performance Heat Pipes,” Heat Transfer Engineering, Vol. 16, No. 1, 1995, pp.44-52

Stephan, P. C. and Busse, C. A.,“Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls,” International Journal of Heat and Mass Transfer, Vol.30, No, 2, 1992, pp.383-391.

Stuber N. P., Studies of Continuous Methylmethacrylate Polymerizatin in a Twin-Screw Extruder, PhD Dissertation Minnesota University, USA, 1988.

Tracey, V. A. “Pressing and Sintering of Nickel Powders,” The International Journal of Powder Metallurgy & Powder Technology, Vol.20, No.4, pp.281-285, 1984.

Wolf, D. A., Ernst, D. M., and Phillips A. L., “Loop Heat Pipes-Their Performance and Potential,” SAE Paper No.941575, 1994.

Wrenn, K. R., Wolf, D. A., and Kroliczek, E. J., “Effect of Noncondensible Gas and Evaporator Mass on Loop Heat Pipe Performance,” SAE Paper No.2000-01-2409, pp.603-614, 2001.

杜逸虹 “聚合體學” 三民書局 , 1978.

黃文宏, 燒結式微熱管之製造與性能測試”, 國立台灣大學碩士論文, 2000.

賴錦川,“燒結式微熱管毛細結構參數之影響研究”, 國立台灣大學碩士論文, 2000.

陳泰宇,“迴路式熱管製造與性能測試”, 國立台灣大學碩士論文, 2001.

張文華,“迴路式熱管參數影響之研究”, 國立台灣大學碩士論文, 2001.

黃坤祥 “粉末冶金學” 中華民國粉末冶金協會 , 2001.

朱振毅, “微小型迴路式熱管之設計製造及性能測試” , 國立台灣大學碩士論文, 2002.

王添銘 “迴路式熱管之毛細結構的設計製造及性能測試”, 國立台灣大學碩士論文, 2002.

鄭國章 “具高緻密度毛細結構之迴路式熱管”, 國立台灣大學碩士論文, 2003.

王鵬凱 “應用於迴路式熱管高分子毛細結構之製造研究”,國立台灣大學碩士論文, 2003.

高濂, 孫靜和劉陽橋 “奈米粉體的分散與表面改質” , 化學工業出版社, 2003.

吳聖俊, 劉秉翰, 鄭少傑, 陳瑤明, “具高分子毛細結構迴路式熱管之性能測試” 中國機械工程學會第二十一屆全國學術研討會論文集, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔