跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭暉達
研究生(外文):Hui-Ta Cheng
論文名稱:從設備投資之回收年限的觀點建立自動化物料搬運系統的評估方法
論文名稱(外文):The development of an evaluation method based on the investment return for AMHS in a semiconductor plant
指導教授:謝淑華謝淑華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:103
中文關鍵詞:自動化物料搬運系統回收年限Little’s Law限制理論
外文關鍵詞:an automated material handling systeminvestment returnLittle’s Lawtheory of constraints
相關次數:
  • 被引用被引用:2
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於12吋晶圓的引進,非生產設備的自動化物料搬運系統將全面導入晶圓製造廠中。針對生產設備之效益評估,一般皆以投資報酬率為主要訴求,因此回收年限就成為其評估的重要指標。至於非生產設備之自動化物料搬運系統,則大都以搬運效率為評估的依據。
本研究擬從回收年限的角度,來探討與評估比較不同設計的自動化物料搬運系統,進而提供投資者一套評估的準則。本研究將先以Little’s Law的觀念,將非生產設備之系統效益區分為產能提升及線上在製品庫存降低兩種情形。再以限制理論為基礎提出新的成本概念,並經由此概念將系統效益變化加以資金化,最終再以裝設成本及資金化後之效益變化來估算其回收年限。透過本研究所提出之評估方法,期投資者能對於晶圓廠中自動化物料搬運系統於整體效益的提昇有更深一層的認識。
Because of the advent of 12-inch semiconductor wafers, the automated material handling system (AMHS) becomes a necessary investment to the industry. The main evaluation methods for most of production equipments are normally based on the investment return. For those non-productivity equipment investments, the investment returns are difficult to estimate since they do not produce products. Therefore, the evaluations of the AMHS are mostly focused on the minimization of the total traveling distance. However, the shortest traveling distance does not guarantee the best efficiency. Of course, it does not lead to the best investment return.

The main purpose of this study intends to evaluate an AMHS from the investment return viewpoint. This study includes two parts. In part I, by adopting the concept of the Little''s law, the system efficiency due to the installation of an AMHS can be quantified. The resulting efficiency can either be from the increase of the throughput, or the decrease of the WIP inventory. The former makes extra sale profit, and the latter saves the WIP inventory cost. In part II, based on the theory of constraints (TOC), TOC product costing and profit estimation formulations are established. The investment return years can then be estimated by dividing the sale extra profit to the investment for the case of the throughput increase, or by dividing the saving inventory cost to the investment for the case of the WIP inventory decrease. For the purpose of demonstrating the proposed method, a specified simulation case is performed and the years of returns are estimated one by one for different market prospects at last.
目 錄
致謝...............................................Ⅰ
中文摘要...........................................Ⅱ
英文摘要...........................................Ⅲ
目錄...............................................Ⅳ
圖目錄.............................................Ⅶ
表目錄.............................................Ⅷ

目 錄
第一章 緒論........................................1
1-1研究背景與動機...................................1
1-2研究目的.........................................4
1-3研究步驟.........................................4
第二章 文獻回顧....................................7
2-1自動化物料搬運系統效益分析之相關研究文獻回顧.....7
2-2廠房規劃佈置之相關研究文獻回顧...................9
2-3搬運車管理問題之相關研究文獻回顧.................11
第三章 研究基礎....................................14
3-1自動化物料搬運系統之簡介.........................14
3-2 Little’s law之簡介.............................16
3-3成本估算之理論基礎...............................17
3-3-1作業基礎成本制之簡介.........................18
3-3-1-1作業基礎成本制之相關研究.................18
3-3-2限制理論之簡介...............................19
3-3-2-1限制理論之相關研究.......................22
第四章 以模擬方式建立AMHS之TOC回收年限評估方法學...25
4-1定義系統獲利.....................................28
4-2建立TOC回收年限評估方法學........................30
4-2-1建立TOC製造成本計算式........................31
4-2-2產能獲利運算法...............................39
4-2-3TOC庫存成本運算法............................40
4-3方法學之建立與流程總結...........................43
第五章 實例探討—以模擬方式建立AMHS之TOC回收年限評估方法學..................................................52
5-1廠房與AMHS的佈置與規劃...........................52
5-2模擬實驗平台構建.................................57
5-2-1製程及設備介紹...............................57
5-2-2系統假設.....................................60
5-2-3實驗平台建構.................................62
5-2-4模型邏輯及程序...............................68
5-3實例探討............... .........................72
5-3-1產能相近之TOC囤積成本評比....................74
5-3-2產能相異之產能獲利評比.......................85
5-3-3討論.........................................87
5-4小結.............................................90
第六章 總結........................................91
6-1結論.............................................91
6-2未來研究方向.....................................92
參考文獻............................................93
附錄................................................98
附表1產品A晶圓加工製程表........................... 98
附表2產品B晶圓加工製程表...........................100
附表3各機台名稱與種類資料表........................102

圖 目 錄
圖2-1兩種常見之晶圓廠規劃佈置示意圖.................10
圖2-2加工區和機台間寬度之示意圖.....................10
圖4-1模擬實驗流程圖.................................27
圖4-2某廠IC製造流程圖...............................41
圖4-3研究流程.......................................43
圖4-4各製程影響示...................................48
圖5-1脊柱式廠房佈置圖...............................54
圖5-2 Overhead Hoist Transporter....................55
圖5-3 Rail Guided Vehicle...........................56
圖5-4系統流程圖.....................................63
圖5-5模擬系統示意圖.................................71
圖5-6倉儲費用與投料率之關係圖.......................84
圖5-7在製品數量與投料率之關係圖.....................84

表 目 錄
表4-1某晶圓製造廠之設備規劃.........................36
表4-2晶圓批經過不同機台加工之TOC製造成本比較表......38
表4-3不同序號之晶圓批其負擔之製造成本...............42
表4-4 OHT及RGV之參數比較............................44
表4-5 A、B系統之各項相關數據表......................48
表4-6某晶圓廠利用不同搬運系統之相關數據表...........49
表5-1各加工區內所包含之機台群編號...................58
表5-2各機台設備資料表...............................59
表5-3物件表.........................................64
表5-4控制物件表.....................................65
表5-5系統階層關係表.................................66
表5-6各類別機台數量.................................68
表5-7晶圓加工區(bay)之From-To表...................72
表5-8 A、B產品所需經過各機台加工次數之比較表........73
表5-9模擬360天,重複10次後各機台之瓶頸機率平均值分佈75
表5-10機台相關數據..................................77
表5-11 TOC製造成本..................................79
表5-12 A產品之TOC製造成本累計表.....................80
表5-13 B產品之TOC製造成本累計表.....................81
表5-14產能相近下裝設不同AMHS之倉儲費用績效表現......82
表5-15產能相異下裝設不同AMHS之產能獲利績效表現......86
表5-16倉儲費用與回收年限關係表......................88
表5-17產能獲利與回收年限關係表......................89
江貞誼,探討於晶圓廠自動化物料搬運系統中加裝捷徑裝置之效益研究,國立台灣大學機械工程學研究所碩士論文,2004.

呂博裕與王福琨,晶圓製造廠自動化物料搬運與儲存系統之模擬分析,工業工程學刊,第十六卷,第二期,頁183-194,1999.

張盛鴻、馮鈺敏、杜瑩美、黃承龍、李榮貴,以限制理論為基礎之晶圓製造廠派工法則,Journal of the Chinese Institute of Industrial Engineers, Vol.16, No.2, pp.209-220, 1999.

張盛鴻、張立賢、李榮貴,晶圓廠之整合式生產控制方法,Journal of the Chinese Institute of Industrial Engineers, Vol.18, No.4, pp.59-72, 2001.

侯凱中,以限制理論為基礎的半導體晶圓製造系統派工法則研究,國立台灣大學機械工程學研究所碩士論文,2001.

陳宏偉,針對模組化晶圓廠採用製程導向的廠區佈置及物料搬運系統設計,國立台灣大學機械工程學研究所碩士論文,2000.

陳紹偉,12吋IC代工廠自動化物料搬運系統之系統模擬與派工法則研究,國立台灣大學機械工程學研究所碩士論文,1999.

黃惠蘭,作業基礎成本制於積體電路製造廠之應用-以個案公司為例,國立台灣大學會計學研究所碩士論文,1997.

楊景如,晶圓廠自動化物料搬運系統之搬運車運作策略模擬研究,國立清華大學工業工程與工程管理學系碩士論文,2002.

馮鈺敏,考慮晶圓製造廠整體績效之組合式及時派工法則,國立交通大學工業工程研究所碩士論文,1997.

顏柄榮,半導體晶圓廠自動化物料搬運系統之模擬分析,國立清華大學工業工程與工程管理學系碩士論文,2000.


Blackstone, J.H., “Theory of Constraints – a Status Report,” International Journal of Production Research, Vol.39, No.6, pp.1053-1080, 2001.

Boons, Arnick N.A.M. “Product costing for complex manufacturing systems,” International Journal of Production Economics, 55, pp.241-255, 1998.

Cardarelli, G., Member, IEEE, and Pelagagge, P. M., “Simulation Tool for Design and Management Optimization of Automated Interbay Material Handling and Storage Systems for Large Wafer Fab,” IEEE Transactions on Semiconductor Manufacturing, Vol.8, No.1, pp.44-49, 1995.

Chen, M.-T., Mcginnis, L. and Zhou, C., “Design and Operation of Single-Loop Dual-Rail Inter-Bay Material Handling System,” International Journal of Production Research, Vol.37, No.10, pp.2217-2237, 1999.

Glassey, C.R. and Resende, M.G.C., “Closed-Loop Job Release Control for VLSI Circuit Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol.1, No.1, February, pp.36-46, 1988.

Glynn, P. W., and Whitt, W., “Indirect Estimation Via L=λW,” Operations Research, Vol.37, No.1, pp.82-103, 1989.

Goldratt, E.M. “The Goal,” New York:North River Press, 1984.

Gunasekaran, A., and Sarhadi, M., “Implementation of activity-based costing in manufacturing,” International Journal of Production Economics, 56-57, pp.231-242, 1998.

Hu, C.-H. and Egbelu, P.J., “Selection of Circulatory Loops for Patrol Vehicles Operating in a Network,” International Journal of Production Research, Vol.39, No.4, pp.579-601, 2001.

Huang, J. Y., and Sha, D.Y., “A Common Buffer-Based Approach to Buffer Management for a Wafer Fabrication Factory,” International Journal of Industrial Engineering, Vol.5, No.3, pp.205-213, 1998.
Ioannou, G. and Sullivan, W.G., “Use of Activity-Based Costing and Economic Value Analysis for The Justification of Capital Investments in Automated Material Handling Systems,” International Journal of Production Research, Vol.37, No.9, pp.2109-2134, 1999.

Kuo, C.-H., “Modelling and Performance Evaluation of an Overhead Hoist Transport System in a 300 mm Fabrication Plant,” International Journal of Advanced Manufacturing Technology, pp.153-161, 2002.

Kurosaki, R., Nagao, N., Komada, H., Watanable, Y., and Yano, H., “AMHS for 300mm Wafer,” IEEE International Symposium on semiconductor Manufacturing Conference, pp.D13-D16, 1997.

Langevin, A., Montreuil, B. and Riopel, D., “Spine Layout Design,” International Journal of Production Research, Vol.32, No.2, pp.429-442, 1994.

Lawrence S. R., and Buss, A. H., “Shifting Production Bottlenecks: Causes, Cures, and Conundrums,” Production and Operations Management, Vol.3, No.1, pp.21-37, 1994.

Liao, D. Y., Member, “Dynamic OHT Allocation and Dispatching in Large-Scaled 300mm AMHS Management,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington, DC, May, 2002.

Lu, C. H. S., Ramaswamy, D., and Kumar, P. R., “Efficient Scheduling Policies to Reduce Mean and Variance of Cycle-Time in semiconductor Manufacturing Plants,” IEEE Transactions on Semiconductor Manufacturing, Vol.7, pp.374-388, 1994.

Lin, J. T., Wang, F. K. and Wu, C. K. “Connecting Transport AMHS in a Wafer Fab,” International Journal of Production Research, Vol.41, No.3, pp.529-544, 2003.

Min, H.-S., and Yih, Y., “Development of a Real-Time Multi-Objective Scheduler for a Semiconductor Fabrication System,” International Journal of Production Research, Vol.41, No.10, pp.2345-2364, 2003.
Nozari, A., and Whitt, W., “Estimating Average Production Intervals Using Inventory Measurements:Little’s Law for Partially Observable Processes,” Operations Research, Vol.36, No.2, pp.308-323, 1988.

Peters, B.A., and Yang, T., “Integrated Facility Layout and Material Handling System Design in Semiconductor Fabrication Facilities,” IEEE Transactions on Semiconductor Manufacturing, Vol.10, No.3, August, pp.360-369, 1997.

Pillai, D., Tim, Q., Kryder, K., Charlson, D.,” Integration of 300 mm fab layouts and material handling automation,” IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings, p 23-26, 1999.

Pierce, N. G., and Stafford R., “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication,” Proceedings of the 1994 Winter Simulation Conference, pp.900-906, 1994.

Taho Yang, Maheswaran Rajasekharan, and Brett A. Peters, “Semiconductor Fabrication Facility Design Using a Hybrid Search Methodology,” Computers & Industrial Engineering, pp.565-583, 1999.

Ting, J.H. and Tanchoco, J. M. A., “Unidirectional Circular Layout for Overhead Material Handling Systems,” International Journal of Production Research, Vol.38, No.16, pp.3913-3935, 2000.

Ting, J.H. and Tanhoco, J. M. A., “Optimal Bidirectional Spine Layout for Overhead Material Handling Systems,” IEEE Transactions on Semiconductor Manufacturing, Vol.14, No.1, February, pp.57-64, 2001.

Wang, F. K., Lin, J. T. “Performance Evaluation of an Automated Material Handling System for a Wafer Fab”, Robotics and Computer-Integrated Manufacturing, Vol.20, No.2, April, 2004, p 91-100

Wein, L.W., “Scheduling Semiconductor Wafer Fabrication,” IEEE Transactions on Semiconductor Manufacturing, Vol.1, No.3, August, pp.115-130, 1988.

Weiss, M., “300mm Fab Automation Technology Options and Selection Criteria,” 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference Workshop, pp.373-379, 1997.

William, G. Jr, and Egbelu, P. J., “Guide Path Design and Location of Load Pick-Up/Drop-Off Points for an Automated Guided Vehicle System,” International Journal of Production Research, Vol.28, No.5, pp.927-941, 1990.

Yang, T. and Peters, B.A., “A Spine Layout Design Method for Semiconductor Fabrication Facilities Containing Automated Material-Handling Systems,” International journal of Operations & Production Management, Vol.17, No.5, pp.490-501, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top