跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江家慶
研究生(外文):Chia-Chin Chiang
論文名稱:以內埋式光纖光柵感測器監測碳纖維複合材料之疲勞損傷
論文名稱(外文):Investigation of the Fatigue Damage in Polymeric Composite by Using Optic Fiber Grating Sensors
指導教授:單秋成單秋成引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:136
中文關鍵詞:布拉格光柵長週期光柵能量調變複合材料疲勞損傷
外文關鍵詞:Fiber Bragg GratingLong Period Fiber GratingIntensity ModulationCompositeFatigue Damage
相關次數:
  • 被引用被引用:4
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Carbon fiber reinforced plastics (CFRP) are used in various fields due to their high specific strength and specific modulus. It is important to monitor the damage occurrence and development to make CFRP materials reliable and safe. Current methods for internal defect examination in polymeric composites are time consuming and often cannot provide real time monitoring while the components concerned are in use. We propose to use optical fiber sensors for real time monitoring of internal defect development under fatigue loading. Optical fiber has a small diameter, is unaffected by electro-magnetic interference and is reasonably temperature resistant. It may be embedded inside a composite material and comes close to the internal defects. The current work aimed at exploring the use of embedded fiber Bragg grating (FBG) to monitor fatigue damage evolution in a Graphite/Epoxy composite.
The on-set and development of the fatigue damage was assessed through changes in the shape of the optical spectrum and shift in wavelengths in the optical fiber sensors. The evolution in light spectrum during fatigue may be divided into four stages. The test specimens were also examined using X-ray radiography, ultrasonic scan, modulus degradation and optical microscopy to reveal the type and extents of the defects at different stages of fatigue damage. Comparison with conventional examination results shows that changes in the light spectrum are associated with (1) matrix cracking in the 90o lamina; (2)splitting along the fiber direction in the ±45o laminae; (3) splitting along the fiber direction in the 0o lamina ; and (4) delamination.
As a conclusion, embedded fiber grating sensors appears to have the potential to be developed into a useful tool for on-line structural health monitoring of composite structures.
Content
Abstract I
List of Figures III
List of Acronyms VIII

Chapter 1 Introduction 1
Thesis layout 2
Chapter 2 Background 3
2.1 Basic of optical fibers 3
2.1.1 Introduction to optical fibers 3
2.1.2 Types of fiber 3
2.1.3 Basic parameters of optical fibers 4
2.2 Optic fiber grating sensors 5
2.2.1 Fiber Bragg grating (FBG) 6
2.2.2 Fabrication of fiber Bragg grating sensors 7
2.2.3 Introduction to long period fiber grating 7
2.2.4 Fabrication of long period fiber grating 9
2.3 Fatigue damage in composite materials 9
2.4 Embedded FBG in composite materials 11
2.4.1 Embedded FBGs for curing monitoring and residual strain measurement in composite. 11
2.4.2 Comparison the embedded FBGs with traditional internal defects detection method in composite materials 12
2.4.3 Damage monitoring by embedded FBGs in composite materials 12
2.5 Summary 14
Chapter 3 Theory of optic fiber grating sensors and interrogation system 23
3.1 Theory of optic fiber grating sensors 23
3.1.1 Theory of FBG 23
3.1.2 Theory of LPFG 27
3.2 Optic fiber grating sensors interrogation system 29
3.2.1 Working principle of the current intensity modulation method for FBG interrogation 31
3.2.2 Working principle of the current intensity modulation method for LPFG interrogation 32
3.2.3 Comparison of different interrogation methods 32
Chapter 4 Experimental procedure 39
4.1 Fabrication of optic fiber sensors: 39
4.1.1 Fabrication fiber Bragg grating sensors 39
4.1.2 Fabrication of Long period fiber grating 39
4.2 Application of optical fiber grating sensors to different measurements 40
4.2.1 Strain monitoring 40
4.2.2 Temperature calibration 41
4.2.3 High frequency strain monitoring 41
4.2.4 Crack closure measurement 41
4.3 Preparation of composite materials 42
4.3.1 Composite laminate 42
4.3.2 Embedding FBG in composite laminate 43
4.3.3 Fatigue test of composite materials with embedded FBGs 43
4.4 Damage evaluation methods 44
4.4.1 Optical Microscopy 44
4.4.2 C-scan method 44
4.4.3 X-radiation method 45
Chapter 5 Optical fiber grating sensors 53
5.1 Quasi-steady state characterizations of optical fiber grating sensors 53
5.1.1 Quasi-steady Temperature measurement 53
5.1.2 Quasi-steady Strain measurement 54
5.1.3 Environmental index effect 54
5.1.4 Comparison of fiber grating sensors 56
5.2 The hybrid FBG-LPFG intensity modulation sensing system for FBG sensor interrogation. 57
5.2.1 Intensity modulation method for FBG interrogation 57
5.2.2 FBG as dynamic strain sensor under cyclic loading 57
5.2.3 FBG as dynamic strain sensor under high frequency loading 58
5.2.4 Application: crack closure measurement by FBGs sensors 60
5.3 The hybrid FBG-LPFG intensity modulation sensing system for LPFG sensor interrogation. 62
5.3.1 Temperature measurement of SC-LPFG and DC-LPFG by intensity modulation system 62
5.3.2 LPFG as dynamic strain sensor under cyclic loading 63
5.4 Summary: 64
Chapter 6 Fatigue damage monitoring in composite laminate 77
6.1 Experiment plan 77
6.2 Group A: Fatigue damage mechanism evaluation 78
6.3 Group B: Monitoring of fatigue damage development 79
6.4 In-depth Fatigue damage mechanism evaluation (Groups C~D): 83
6.4.1 Monitoring of the emergence of fatigue damage in composite 84
6.4.2 Spectra evolution with damage development 85
6.4.3 Comparison with other methodology of damage evaluated 87
6.5 Summary 89
Chapter7 Conclusions and future work 122
7.1 Conclusions for OFGS and interrogation System 122
7.2 Conclusion for embedded FBGs for fatigue damage monitoring 122
7.2 Future work 125
Reference 127
Author Biography 134
Reference
1.Allsop, T.; Webb, D.J. and Bennion, I. “Investigations of the spectral sensitivity of long period gratings fabricated in three-layered optical fibre” Journal of Lightwave Technology, vol.21, pp.264-268, 2003a.
2.Allsop, T. ; Webb, D.J. and Bennion, I. “Bend and index insensitive long period grating in progressive three layered optical fibre” Electronics Letters, vol.39, pp.508-509, 2003b.
3.Allsop, T. ; Webb, D.J. and Bennion, I. “A comparison of the sensing characteristics of long period gratings written in three different types of fibre”, Optical fiber Tech., vol.9, pp.210-223, 2003c.
4.Besley, J.A.; Wang, T. and Reekie, L. “Fiber cladding mode sensitivity characterization for long-period gratings” Journal of Lightwave Technology, vol.21, no.3, pp. 848 – 853, 2003.
5.Bhatia, V. and Vengsarkar, A.M. “Optical fiber long-period grating sensors” Optics Letters, vol.21, pp.692-694,1996.
6.Brown, R.D. and Weertman, J. , “Mean Stress Effects on Crack Propagation Rate and Crack Closure in 7050-T76 Aluminum Alloy,” Engineering Fracture Mechanics, vol.10, no.4, pp.757-771 , 1978.
7.Cooper, K.R.; Elster, J.; Jones, M. and Kelly, R. G. “Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft” AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology Conference. pp. 847-856, 2001.
8.El-Sherif, M.A. and Radhakrishnan, J. “Advanced composites with embedded fiber optic sensors for smart applications” Journal of Reinforced Plastics and Composites, vol.16, pp.144-154, 1997.
9.Elber, W. “Fatigue Closure under Cyclic Tension,” Engineering Fracture Mechanics, vol.2, pp.37-45, 1970.
10.Fallon, R.W.; Zhang,L. and Bennion, I. “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications” IEEE Photonics Technology Letters, vol.9, pp.1616 –1618,1997a.
11.Fallon, R.W.; Everall, L.A.; Zhang, L. and Bennion, I. “ Multiple strain sensor interrogation with an asymmetric grating” Lasers and Electro-Optics CLEO 98. Technical Digest, pp.423-424,1998.
12.Fallon, R.W.; Zhang, L.; Gloag, A. and Bennion, I. “Identical broadband chirped grating interrogation technique for temperature and strain sensing” Electronics Letters, vol.33, pp.705 –707,1997b.
13.Ghatak, A. and Thyagrajan, K. “Introduction to Fiber Optics”, Cambridge University Press, 1998.
14.Gwandu, B.A.L.; Shu, X.; Allsop, T.D.P.; Zhang, W.; Zhang L. and Bennion, I. ”Simultaneous refractive index and temperature measurement using cascaded long-period grating in double-cladding fibre” Electronics Letters, vol.38, pp.695–696, 2002.
15.Hadzic, R. ; John, S. and Herszberg, I. “Structural integrity analysis of embedded optical fibres in composite structures” Composite Structures, vol.47, no.1, pp.759-765, 1999.
16.Han, K.J.; Lee, Y.W.; Kwon, J.; Roh, S.; Jung, J. and Lee, B. “Simultaneous measurement of strain and temperature incorporating a long-period fiber grating inscribed on a polarization-maintaining fiber” IEEE Photonics Technology Letters, vol.16, no.9, pp 2114-2116, 2004.
17.Hill, K.O.; Fujii, Y.; Johnson, D.C. and Kawasaki, B.S. “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, vol.32, no.10, pp. 647-649, 1978.
18.Hill, K. O.; Malo, B. ; Bilodeau, F. Johnson, D. C. and Albert, J. "Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask," Applied Physics Letters, vol.62, no.10, pp.1035-1037, 1993.
19.Hill, P.C. and Eggleton, B.J. “Strain gradient chirp of fibre Bragg gratings,” Electronic Letters., vol.30, no.14, pp.1172-1174, 1994.
20.Hill, K.O. and Meltz, G. “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, vol.15, no.8, pp.1263-1276, 1997.
21.Irving, P.E.; Robinson, J.L. and Beevers, C.J. “Study of the Effects of Mechanical and Environmental Variables on Fatigue Crack Closure,” Engineering Fracture Mechanics, vol.7, no.14, pp.619-630, 1975.
22.James, S.W. and Tatam, R.P. “Optical fibre long-period grating sensors: Characteristics and application” Measurement Science and Technology, vol.14, no.5, pp49-61, 2003.
23.Kashyap, R. “Fiber Bragg Grating”, Academic Press, 1998.
24.Kang, H.K.; Kang, D.H.; Bang, H.J.; Hong1, C.S. and Kim, C. G. “Cure monitoring of composite laminates using fiber optic sensors” Smart Materials and Structures, vol.11, pp.279-287, 2002.
25.Kashtalyan, M. and Soutis, C. “The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates” Composites: Part A, vol.31, pp.107–119, 2000
26.Kersey, A.D. and Berkoff, T.A. “Fiber optic Bragg grating differential temperature sensor” IEEE Photon Technology Letter, vol.4, pp.1183-1185, 1992.
27.Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A. and Friebele, E.J. “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, No. 8, pp.1442-1463, 1997.
28.Khaliq, S.; James, S.; Stephen, W. and Ralph, P.T., “Fiber-optic liquid-level sensor using a long-period grating” Optics Letters, vol.26, no.16, pp1224-1226, 2001.
29.Kuang, K.S.C.; Kenny, R.; Whelan, M. P.; Cantwell, W. J. and Chalker ,P. R. “Residual strain measurement and impact response of optical fibre Bragg grating sensors in fibre metal laminates” Smart Materials and Structures, vol.10, pp.338-346, 2001.
30.Lau, K.T. ; Yuan, L.; Zhou, L.M.; Wu, J. and Woo, C.H. “Strain monitoring in FRP laminates and concrete beams using FBG sensors” Composite Structures, vol.51, pp.9-20, 2000.
31.Lee B.H. and Nishii J. “Temperature sensor using the self-interference of a long-period fiber grating “ Proceedings of SPIE – The International Society for Optical Engineering, vol.3746, pp418-421, 1999.
32.Leng, J.S. and Asundi, A. “Non-destructive evaluation of smart materials by using extrinsic Fabry–Perèt interferometric and fiber Bragg grating sensors” NDT and E International, vol. 35, pp.273-276, 2002a.
33.Leng, J.S. and Asundi, A. “Real-time cure monitoring of smart composite materials using extrinsic Fabry–Perot interferometer and fiber Bragg grating sensors” Smart Materials and Structures, vol.11, pp.249-255, 2002b.
34.Leng, J.S. and Asundi, A. “Structural health monitoring of smart composite materials by using EFPI and FBG sensors” Sensors and Actuators A, vol.103, pp.330-340, 2003.
35.Lin, C.L. “Opto-Mechanical Applications of Microstructured Materials” PhD thesis, Joseph Fourier University /National Taiwan University, 2004.
36.Meltz, G.; Money, W. W. and Glem, W. H. "Formation of Bragg Gratings in Optical fibres by a Transverse Holographic Method," Optics Letters, vol.14, no.15, pp.823-825, 1989.
37.Meltz, G.; Morey, W.W. and Glenn, W.H. “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters, vol.14, no.15, pp. 823-825, 1989.
38.Murukeshan, V.M.; Chan, P.Y.; Ong, L.S. and Seah, L.K. “Cure monitoring of smart composites using fiber Bragg grating based embedded sensors,” Sensors and Actuators, Vol. 79, No. 2, 2000, pp. 153-161.
39.Murukeshan, V.M.; Chan, P.Y.; Ong, L.S. and Seah, L.K. “Cure monitoring of smart composites using fiber Bragg grating based embedded sensors,” Sensors and Actuators, Vol. 79, No. 2, 2000, pp. 153-161.
40.Ng, M.N.; Chen, Z. and Chiang, K.S. “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect”, IEEE Photonics Technology Letters, vol.14, no.3, pp361 –362, 2002.
41.Ogihara, S. ; Takeda, N. ; Kobayashi, S. and Kobayashi, A. “Damage mechanics characterization of transverse cracking behavior in quasi-isotropic CFRP laminates with interlaminar-toughened layers” International Journal of Fatigue, vol.24, pp.93-98, 2002.
42.Okabe, Y.; Yashiro, S. ; Kosaka, T. and Takeda, N. “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors” Smart Materials and Structures, vol.9, pp.832-838, 2000.
43.Okabe, Y. ; Mizutani, T.; Yashiro, S. and Takeda, N. “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors” Composites Science and Technology, vol.62, pp.951-958, 2002a.
44.Okabe, Y.; Tanaka, N. and Takeda, N. “Effect of fiber coating on crack detection in carbon fiber reinforced plastic composites using fiber Bragg grating sensors” Smart Materials and Structures, vol.11, no.6, pp.892-898, 2002b.
45.Okabe, Y.; Tsuji, R. and Takeda, N. “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates” Composites Part A: Applied Science and Manufacturing, vol.33, pp.991-999, 2002c.
46.Okabe, Y. ; Tsuji, R. and Takeda, N. “Application of chirped fiber Bragg grating sensors for identification of crack locations in composites” Composites Part A: Applied Science and Manufacturing, vol.35, no.1, pp.59-65, 2004.
47.Onur Kas, Y. and Kaynak, C. “Ultrasonic (C-scan) and microscopic evaluation of resin transfer molded epoxy composite plates” Polymer Testing, vol.24, pp.114–120, 2005.
48.Rao, Y.J.; Kalli, K. ; Brady, G.; Webb, D.J.; Jeckson, D.A.; Zhang, L. and Bennion, I. “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection” Electronics Letters, vol.31, pp.1009-1010, 1995.
49.Rao, Y.J. “Recent Progress in Applications of In-Fibre Bragg Grating Sensors,” Optics and Lasers in Engineering, vol.31, no.3, pp.297-324, 1999.
50.Pang, C.M. and Song, J.H. “Crack Growth and Closure Behavior of Short Fatigue Cracks,” Engineering Fracture Mechanics, vol.47, no.13, pp.327-343 , 1994.
51.Paris, P.C. and Erdongan, F. “A critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, vol.85, pp.528-534, 1960.
52.Patrick, H.J.; Kersey, A.D. and Bucholtz, F. “ Analysis of the response of long period fiber gratings to external index of refraction”, Journal of Lightwave Technology, vol.16, pp.1606 –1612, 1998.
53.Saleh, B.E.A. and Teich, M.C. “fundamentals of Photonics”, Wiley Interscience, 1991.
54.Schlat, F. “Dynamic Compliance Measurement — a Proposed New and Efficient Method to Investigate Crack Nucleation and Propagation Phenomenon,” International Journal of Fracture, vol.19, no.2, pp.37–40 , 1982.
55.Seo, D.C. and Lee, J.J. “Damage detection of CFRP laminates using electrical resistance measurement and neural network” Composite Structures, vol.47, no.1, pp.525-530, 1999.
56.Sharpe, W.N. and Grandt, A.F. “A Preliminary Study of Fatigue Crack Retardation Using Laser Interferomerty to Measure Crack Surface Displacement, Mechanics Of Crack Growth,” ASTM STP590, pp.302–320, 1976.
57.Shin, C.S. and Smith, R.A. “Fatigue Crack Growth from Sharp Notches,” International Journal of Fatigue, vol.7, no.2, pp.87–93 , 1985.
58.Shin, C.S. and Fleck, N.A. “Overload Retardation in a Structural Steel,” Fatigue & Fracture Engng. Mat. & Struct, vol.9, no.5, pp.379–393 , 1987.
59.Skontorp, A. “Structural integrity of quasi-isotropic composite laminates with embedded optical fibers” Journal of Reinforced Plastics and Composites: vol.19, no.13, pp.1056-1077, 2000.
60.Song, J.H. and Ki, C.Y. “Fatigue Crack Closure and Growth Behavior under Random Loading,” Engineering Fracture Mechanics, vol.49, no.1, pp.105-120, 1994.
61.Summerscales, J. “Non-destructive testing of fiber reinforced plastics composite”, vol.1, Elsevier applied science publishers LTD, New Yark, 1987.
62.Takeda, N. “Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors” International Journal of Fatigue, vol.24, pp.281-289, 2002.
63.Takeda, S.; Okabe, Y. and Takeda, N. “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors” Composites: Part A, vol.33, pp. 971–980, 2002.
64.Takeda*, S.; Okabe, Y.; Yamamoto, T. and Takeda, N. “Detection of edge delamination in CFRP laminates under cyclic loading using small-diameter FBG sensors” Composites Science and Technology, vol.63, pp.1885–1894, 2003
65.Takeda, N. ; Mizutani, T.; Hayashi, K. and Okabe, Y. “Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks” Proceedings of SPIE - The International Society for Optical Engineering, vol.5056, pp.304-311, 2003.
66.Talreja, R. “Fatigue of composite Materials” Technomic Publishing Co. Inc. Lancater. Penn. U.S.A., pp.3-58, 1987.
67.Tomasel, F.G. and Laura, P.A.A. “Assessing the Healing of Mechanical Structures through Changes in their Vibrational Characteristics as Detected by Fiber Optic Bragg Gratings” Journal of Sound and Vibration, vol. 253, pp.523-527, 2002.
68.Umezaki, E. “Improvement in separation of SMA from matrix in SMA embedded smart structures” Materials Science and Engineering, vol.A285, pp.363–369, 2000.
69.Vengsarkar, A. M.; Lemaire, P. J.; Jacobovitz-Veselka, G. Bhatia, V. and Judkins, J. B. “Long-period fiber gratings as gain-flattening and laser stabilizing devices,” in Proc. IOOC’95, PD1–2, Hong Kong, June 1995.
70.Vengsarkar, A. M.; Lemaire, P. J.; Judkins, J. B.; Bhatia, V.; Erdogan, T. and Sipe, J. E. “Long-period fiber gratings as band-rejection filters,” Journal of Lightwave Technology, vol. 14, pp. 58–64, 1996.
71.Wang, C.M. “Damage behaviors of notched composite laminates” PhD thesis, National Taiwan University, 2001.
72.Zhang, L.; Fallon, R.; Everall, L.A. ; Williams, J.A.R. and Bennion, I. “Large-dynamic-range and high-resolution from a strain sensing system using long-period grating interrogating FBG strain sensor” Optical Communication 24th European Conference, vol.1, pp. 609-610, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林月盛(民87)。資源教室方案的現況與改進。特殊教育季刊,67,27-29 。
2. 吳武典(民83)。我國身心障礙兒童教育安置之檢討。師大學報,39,134-181。
3. 吳武典(民75)。自助式資源教室(班)模式擬議。特殊教育季刊,19,6-10。
4. 李翠玲(民90)。學校行政人員對「個別化教育計畫」之瞭解與支持態度。國小特殊教育,31,36-40。
5. 王天苗(民72)。國中小資源班實施狀況之調查研究。特殊教育季刊,10,14-24。
6. 王振德(民77)。我國資源教室方案實施現況及其成效評鑑。特殊教育研究學刊,4 ,1-20。
7. 王天苗(民72)。國中小資源教室實施狀況之調查研究。特殊教育季刊,10,14-24。
8. 周天賜(民83)。特殊教育相關服務的問題與趨勢。特殊教育季刊,53,1-7。
9. 胡永崇(民89)。國小身心障礙資源班實施現況及改進之研究:以高雄縣為例。屏東師院學報,13,75-110。
10. 高令秋(民84)。資源教室功能之探討。特殊教育季刊,56,11-15。
11. 張蓓莉(民87)。資源教室方案應提供的支援服務。特殊教育季刊,67,1-5。
12. 郭生玉(民83)。影響教師工作心厭因素之分析研究。教育心理學報,27,63-79。
13. 郭惠雯(民91)。融合教育理念之發展與相關問題探討。屏師特殊教育,3,41-49 。
14. 黃武鎮(民72)。台灣省實施資源教室的現況及展望。特殊教育季刊,10,5-10
15. 楊妙芬(民86)。國小工作價值觀、工作滿意度、任教職志與其相關因素之研究。屏東師院學報,10,97-132。