(3.230.143.40) 您好!臺灣時間:2021/04/19 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧雅薇
研究生(外文):Ya-Wei Deng
論文名稱:高解析度之新型CMOS流速感測器之開發與研究
論文名稱(外文):Development of a Novel High Resolution CMOS Flow Sensor
指導教授:陳炳煇陳炳煇引用關係
指導教授(外文):Ping-Hei Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:76
中文關鍵詞:CMOS流速感測器微加熱器熱電耦熱氣團速度量測解析度
外文關鍵詞:CMOS flow sensorPolysilicon micro heaterThermopiles arrayThermal plumeVelocity measurement resolution
相關次數:
  • 被引用被引用:4
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究內容是以CMOS製程為基礎之流速感測器開發,主要應用在監測散熱模組中流場的速度,以觀察散熱模組是否無法達到足夠的散熱效果。此流速感測器結構與信號處理電路之大小為2 mm2,其結構包含一個位於感測器中央之微加熱器、以及四邊圍繞以熱電耦組成之溫度感測器,當給予電壓時,加熱器中心產生一個漂浮的熱氣團,一旦有外界的氣流擾動,此氣團會隨著氣流漂移,造成加熱器四周之溫度感測器感受到不同的溫度,藉由熱電耦的原理,X方向與Y方向之溫度感測器產生溫度差而輸出電壓差值,依據電壓值大小可達到量測氣流流速的目的。本研究針對自然對流問題、傾斜角度問題做出探討,也克服了此結構本身外封裝邊緣產生的效應,找出其最佳的角度應用範圍,以及電壓與氣流流速間之關係。此流速感測器之敏感度可達到0.7 mV/ (m/s),速度量測解析度為0.001 m/s,輸出電壓與流速之間亦具有相當線性之量測結果,此流速感測器之流速量測範圍約為0.1 m/s到3.6 m/s之間。
The study develops an integrated CMOS flow sensor applied in monitoring the flow condition in thermal module. The flow sensor has a high resolution in low speed air flow field. This sensor includes micro structures and mixed signal processor in 2 mm square chip die size fabricated by the standard CMOS process. The microstructures of sensor consist of a polysilicon micro heater and the thermopiles array. The center micro heater encircled by the temperature sensors generates the thermal plume. As the sensor is positioned against the flow, the thermal plume will be pushed towards to the temperature sensors array and the temperature difference can be converted into the voltage to determine the air flow speed. The flow sensors arrayed in four sides gives both output voltages in x-direction and y-direction, and the sensor makes splendid accomplishments as it is operated under impinging flow. Combining signal output from two perpendicular sensors, the module can make three components of velocity measurement. The sensitivity of the flow sensor can be indicated as 0.7 mV/ (m/s) under impinging flow and 0.001 m/s velocity measurement resolution is achieved. The air flow speed ranges from 0.1 to 3.6 m/s.
Acknowledgement I
中文摘要 III
Abstract IV
Table of Contents VI
List of Tables VIII
List of Figures IX

Chapter 1 Introduction 1
1.1 Flow Sensor Applications 1
1.2 Literature Survey 4
1.2.1 Flow sensors based on MEMS and CMOS process 4
1.2.2 Hot-wire and hot-film flow sensors 6
1.2.3 Calorimetric flow sensors 7
1.2.4 Time-of-flight flow sensors 9
1.3 Motivation and Objectives 10
1.4 Thesis Organization 11

Chapter 2 Structures and Operating Principle 13
2.1 Structures of the CMOS flow sensor 13
2.2 Operating Principle of the CMOS flow sensor 13

Chapter 3 Experimental Apparatus and Procedures 15
3.1 Experimental apparatus 15
3.2 Experimental procedures 17
3.2.1 Leveling of CMOS flow sensor 19
3.2.2 Measurement in low flow speed based on the thermal module 19
3.2.3 Measurement of high flow speed 21
3.2.4 Monitor the flow condition of thermal module 21

Chapter 4 Experimental Results and Discussions 23
4.1 Leveling of CMOS flow sensor 23
4.2 Measurement of low flow speed based on the thermal module 25
4.2.1 Effect of parallel flow 25
4.2.2 Effect of impinging flow 26
4.3 Measurement of high flow speed 31
4.4 Monitor the flow condition of thermal module 33
4.5 Analysis of measurement error 34
4.5.1 Measurement instrument error 34
4.5.2 Working error 34
4.5.3 Transfer error 35

Chapter 5 Conclusions and Future Prospects 38

References 74
Fürjes, P., Légrádi, G., Dücső, Cs., Aszódi, A., and Bársony, I., 2004, “Thermal characterisation of a direction dependent flow sensor,” Sensors and Actuators A, 115, pp. 417-423.
Kaltsas, G., and Nassiopoulou, A. G., 1998, “Frontside bulk silicon micromachining using porous-silicon technology,” Sensors and Actuators A, 65, pp. 175-179.
Kaltsas, G., and Nassiopoulou, A. G., 1999, “Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation,” Sensors and Actuators A, 76, pp. 133-138.
Kan, P. Y. Y., and Finstad, T. G., 2005, “Oxidation of macroporous silicon for thick thermal insulation,” Material Science and Engineering B, 118, pp. 289-292.
Lammerink, T. S. J., Dijkstra, F., Houkes, Z., and Van Kuijk, J., 1995, “Intelligent gas-mixture flow sensor,” Sensors and Actuators A, 46-47, pp. 380-384.
Moser, D., Lenggenhager, R., and Baltes, H., 1991, “Silicon gas flow sensor using industrial CMOS and bipolar IC technology,” Sensors and Actuators A, 27, pp. 591-595.
Moser, D., and Baltes, H., 1993, “A high sensitivity CMOS gas flow sensor on a thin dielectric membrane,” Sensors and Actuators A, 37-38, pp. 33-37.
Neda, T., Nakamura, K., and Takumi, T., 1996, “A polysilicon flow sensor for gas flow meters,” Sensors and Actuators A, 54, pp. 626-631.
Nguyen, N. T., and Kiehnscherf, R., 1995, “Low-cost silicon sensors for mass flow measurement of liquids and gases,” Sensors and Actuators A, 49, pp. 17-20.
Nguyen, N. T., Bochnia, D., Kiehnscherf, R., and Dötzel, W., 1996, “Investigation of forced convection in microfluid systems,” Sensors and Actuators A, 55, pp. 49-55.
Nguyen, N. T., and Dötzel, W., 1997, “Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors,” Sensors and Actuators A, 62, pp. 506-512.
Nguyen, N. T., 1997, “Micromachined flow sensors—a review,” Flow Meas. Instrum., 8, pp. 7-16.
Nguyen, N. T., Schubert, S., Richter, S., and Dötzel, W., 1998, “Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor,” Sensors and Actuators A, 69, pp. 85-91.
Pabst, T., and Völkel, F., 2001, “How Modern Processors Cope with Heat Emergencies,” http://www17.tomshardware.com/cpu/20010917/
Pagonis, D. N., Nassiopoulou, A. G., and Kaltsas, G., 2004, “Porous silicon membranes over cavity for efficient local thermal isolation in Si thermal sensors,” Journal of the Electrochemical Society, 151, pp. H174-H179.
Sabaté, N., Santander, J., Fonseca, L., Gràcia, I., and Cané, C., 2004, “Multi-range silicon micromachined flow sensor,” Sensors and Actuators A, 110, pp. 282-288.
Sabaté, N., Gràcia, I., Santander, J., Cerdà, J., Vilà, A., Morante, J.R., and Cané, C., 2005, “Multisensor chip for gas concentration monitoring in a flowing gas mixture,” Sensors and Actuators B, in press.
Van Oudheusden, B. W., and Huijsing, J.H., 1990, “An electronic wind meter based on a silicon flow sensor,” Sensors and Actuators A, 21-23, pp. 420-424.
Van Oudheusden, B. W., and Van Herwaarden, A. W., 1990, “High-sensitivity 2-D flow sensor with an etched thermal isolation structure,” Sensors and Actuators A, 21-23, pp. 425-430.
Van Oudheusden, B. W., 1992, “Silicon thermal flow sensors,” Sensors and Actuators A, 30, pp. 5-26.
Van Putten, A. F. P., and Middelhoek, S., 1974, “Integrated silicon anemometer,” Electronic Letters, 10, pp. 425-426.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔