跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/14 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家華
研究生(外文):Chia-Hua Lin
論文名稱:電磁吸盤式二維壓電步進器之設計開發與特性探討
論文名稱(外文):Development and Research of A Two-dimensional Piezoelectric Inchworm Actuator with Magnetic Suckers
指導教授:黃光裕
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:93
中文關鍵詞:掃瞄探針顯微術尺蠖式致動二維致動壓電管電磁吸盤共平面架構
外文關鍵詞:Scanning Probe Microscopyinchworm actuatingtwo-dimensional actuatingpiezotubeelectromagnetic suckercoplanar structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
掃描探針顯微技術運用的層面越來越廣,而其中關鍵的致動器元件也必須因應各種運用上的需求,增加其定位精度和致動穩定性或是適應測試環境等需求,而本論文的研究目的就是開發適用於掃描探針顯微技術的二維壓電步進器,步進器用來驅動掃瞄探針或是待測元件,提供探針快速定位以及大範圍掃描兩種功能。致動器的步進方式採用尺蠖式致動原理,為了避免多軸向疊成架構所造成之不穩定致動,以及提昇致動器之緊緻度,所以將二維致動器都整合在同一個平面上,同時採用電磁吸附方式以取代機械夾持機構,簡化夾持機構之結構使其更容易在同一平面上作動。利用一個固定導引面以及一個移動導引面,使二維致動功能結合在一起,同時提供致動器準確和穩定的位移導引。
每一維致動器都是由兩個電磁吸盤和一個壓電管組成,電磁吸盤的吸附力可以透過控制電流大小與極性達到變化,進而使壓電管之變形得以累積成為長行程與往復位移致動。電磁吸盤中整合永久磁石以及電磁線圈兩個磁場能源,再配合上適當磁迴路設計,由永久磁石提供致動器在斷電時穩固位置的磁吸力,電磁線圈則用於致動作用下釋放吸盤的功能。電磁吸盤的吸附性能和致動器之致動性能都透過實驗測試與各式模擬分析進行深入探討,進而得知各種影響因素與其效能。
As the application aspect of Scanning Probe Microscopy is getting wider, the key actuator component satisfies various demands in the application, to increase the positioning precision and actuating stability or to adapt to the testing environment. The purpose of this thesis is to develop a two-dimensional piezoelectric actuator suitable for Scanning Probe Microscopy, the actuator is used for driving the scanning probe or the measured component, providing large scale scanning as well as fast positioning of the scanning probe. The inchworm motion is used as the actuating principle, in order to avoid actuating instability caused by multi axial fold structure and to enhance the compactness of the actuator, the two-dimensional actuators are combined on the same plane, the electromagnetically absorbing way is adopted to replace the traditional clamp mechanism, and simplification of the structure makes it easier to produce a coplanar motion. By utilizing a fixed guiding plane and a movable guiding plane, the two-dimensional actuating function is combined, and it offers an accurate and a steady displacement guiding of the actuator.
Actuator of each dimension consists of two electromagnetic suckers and a piezotube, the absorbing force of the electromagnetic sucker can be altered by controlling the magnitude and polarity of electric current, and thus allows the deformation accumulation of the actuator which results in long stroke and reciprocating displacement. Magnetic field combination of permanent magnet and electromagnetic coil produce the overall electromagnetic sucker magnetic field which is cooperated with proper magnetic circuit design, the permanent magnet offers the magnetic absorbing strength to stabilize the position while power disconnected, moreover, the electromagnetic coil is used for releasing the sucker magnetism’s absorbing force while actuating. The absorbing performance of magnetic sucker and the actuating performance of actuator were carried out into deep discussion by experimental testing and analyzing of various types of simulation, and thus figured out various kinds of factors which affect its efficiency.
誌謝.....................................................Ⅰ
摘要.....................................................Ⅱ
英文摘要.................................................Ⅲ
目錄.....................................................Ⅳ
表目錄...................................................Ⅵ
圖目錄...................................................Ⅶ
符號表...................................................Ⅹ

1. 緒論...................................................1
1.1 研究背景與動機......................................1
1.2 文獻回顧............................................3
1.3 研究目的............................................9
1.4 內容簡介............................................11
2. 壓電管之致動原理與特性................................12
2.1 壓電管之致動原理....................................12
2.2 壓電管之特性與應用..................................16
2.3 壓電管之預壓裝置....................................20
3. 電磁吸盤式步進器之設計開發............................24
3.1 系統設計概念........................................24
3.2 共平面二維吸盤式壓電致動器之架構....................26
3.2.1 撓性框架式致動系統架構........................26
3.2.2 導引式致動系統架構............................28
3.3 電磁吸盤系統之磁場模擬與理論分析....................32
3.4 系統整合與性能模擬分析探討..........................41
3.4.1 系統磁力分析..................................41
3.4.2 系統致動特性之模擬分析........................44
4. 電磁吸盤式步進器之特性量測與分析探討..................51
4.1 電磁吸盤磁力量測....................................51
4.2 系統致動特性量測....................................54
4.2.1 系統致動特性量測架構..........................54
4.2.2 系統致動特性量測結果與分析探討................55
5. 結論與展望............................................71
參考文獻.................................................73
附錄A 壓電材料規格與特性................................76
附錄B 位移量測器(LVDT感測器)與類比訊號比測儀............80
附錄C 負荷計(Load Cell)規格與特性.......................82
附錄D DAQ資料擷取卡規格表...............................84
附錄E 釹鐵硼(NdFeB)磁石之磁性能與其消磁曲線.............85
附錄F 致動器零件圖......................................87
[1] Binnig, G. and Rohrer, H., Surface studies by scanning tunneling microscopy, Physical Review Letters, Vol. 49, No. 1, July 5 1982, pp.57-61

[2] George, R., Incremental feed mechanisms, United state patent office, 3,138,749 Mar 1962, Ser. No. 177,953, 16 Claims

[3] Jonathon, M. H., David, W. A., Eric, G., and John, C., Two-dimensional, remote micropositioner for a scanning tunneling microscope, Rev. Sci. Instrum., Vol. 56, Nov 1985, pp.2168-2170

[4] Shang, G., Qiu, X., Wang, C., and Bai, C., Piezoelectric push-pull micropositioner for ballistic electron emission microscope, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China, March 1997, pp.3803-3805

[5] Kato, H., Torii, A., and Ueda, A., An XYθ actuator with a closed-loop magnetic field, International Symposium on Micromechatronics and Human Science, 1998, pp.83-88

[6] Lequesne, B., Fast-acting long-stroke bistable solenoids with moving permanent magnets, IEEE Transactions on Industry Applications, Vol. 26, No. 3, May/June 1990, pp.401-407

[7] Molenaar, L., Zaaijer, E., and van Beek, F., A novel long stroke planar magnetic bearing actuator, Proceedings of the 4th International Conference on Motion and Vibration Control, volume 3, August 1998, pp. 1071-1076

[8] Ueno, T., Qiu, J., and Tani, J., Magnetic force control with composite of giant magnetostrictive and piezoelectric materials, IEEE Transactions On Magnetics, Vol. 39, No. 6, November 2003, pp.3534-3540

[9] 張添智,以穿隧顯微鏡研究鍺在鉛單原子層所覆蓋之矽(111)上磊晶成長的機制,國立台灣大學電機工程學研究所博士論文,1999

[10] 許溢适, 壓電 / 電歪致動器, 文笙書局,1996


[11] Doebelin, O., Measurement system 5th international edition, McGrawHill, pp284-286

[12] Ohara, T. and Youcef-Toumi, K., Dynamics and control of piezotube actuators for subnanometer precision applications, Proceedings of the American Control Conference, June 1995, pp.3808-3812

[13] Physikinstrumente公司之壓電材料資料庫
http://www.physikinstrumente.de/ --- 2004/3

[14] Microdrop 公司之壓電噴嘴設計
http://www.microdrop.com/ --- 2004/3

[15] 陳聖傑,雙穏態彈跳簧片之位能動能轉換機制於致動和發電系統之特性研究探討,國立台灣大學機械工程學研究所碩士論文,2004

[16] Kim, C., Lewis, L., and Wu, C.C., High authority piezoelectric torsional actuators, Materials science & Technology division, IEEE DARPA Order No. D752, 1988, pp.277-280

[17] Safari, A., Danforth, S.C., Jafari, M., Allahverdi, M., Jadidian, B., and Mohammadi, F., Processing and properties of piezoelectric actuators developed by fused deposition technique, IEEE 101A Phelps, New Brunswick, NJ, 08901, 2001, pp.79-82

[18] 黃光裕,磁性元件與系統,國立台灣大學機械工程學研究所授課講義,1999

[19] 林沛群,被動式磁力控制系統之研究,國立台灣大學機械工程學研究所碩士論文,1998

[20] 李其叡,超高真空掃描穿隧顯微鏡用壓電致動器之設計開發與特性分析,國立台灣大學機械工程學研究所碩士論文,2004

[21] Li, Y., Guo, M., Zhou, Z., and Hu, M., Micro electro discharge machine with an inchworm type of micro feed mechanism, Journal of The International Societies for Precision Engineering and Nanotechnology, Vol. 26, 2002, pp.7-14

[22] Yoda, M. and Shiota, Y., A electromagnetic actuator for a robot working with a man, IEEE International Workshop on Robot and Human Communication, 1994, pp.373-377

[23] Zesch, W., Buchi, R., Codourey, A., and Siegwart, R., Inertial drives for micro- and nanorobots: two novel mechanisms, Swiss Federal Institute of Technology Zurich ETHZ Institute of Robotics,

[24] Baek, S., Han, C.S., Lee, C.H., and Noh, M.D., Design of a preload device for PZT actuator using permagnents, IEEE Transactions on Magntics, Vol. 39, No. 5, September 2003, pp.2965-2967
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林美和(1987)。數學障礙兒童學習問題之研究。國立台灣師範大學社會教育學刊,16,43-76。
2. 秦麗花(1995)。國小數學學障兒童數學解題錯誤類型分析。特殊教育季刊,55,33-38。
3. 郭重吉(1992)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊, 20,(5),548-570。
4. 林碧珍(1990)。新竹師院輔導區國小數學科「怎樣解題」教材實施情況調查與學習成效研究。新竹師院學報,3,363-391。
5. 林碧珍(1987)。數學教師應有的認識,新竹師專,國教世紀, 33,45-63。
6. 林生傳(1996)。概念教學對概念發展的實驗效果—階次理論模式的概念教學實驗。國立高雄師範大學教育學系。教育學刊,12,31--70。
7. 呂玉琴(1991)。國小學生的分數概念:1/2VS.2/4。國民教育。31 ,(11),10~15。
8. 呂溪木(1983)。從國際科展看我國今後科學教育發展的方向。科學教育月刊,64,13-19。
9. 李咏吟(1990)。改進國中低成就學生學習技巧之團體輔導模式,彰化師大輔導學報,13,53-77。
10. 朱經明、蔡玉瑟(2000):動態評量在診斷國小五年級數學障礙學生錯誤類型之應用成效,特殊教育研究學刊,18,173-189。
11. 古明峰(1998)。加減法應用題語文知識對問題難度之影響暨動態評量在應用問題之學習與遷移歷程上研究,新竹師院學報,11,391-420。
12. 張新仁(1989)。學習策略訓練之初探。教育文粹,18,86-94。
13. 陳東陞(1996)。數學科學習困難學生補救教學的實施(中),研習資訊,10(4),26-28。
14. 葉靖雲(1996)。三種課程本位數學評量模式的效度研究。特殊教育學報,11,35-77。
15. 謝琇玲(1999)。國中英語科概念教學之實驗研究。義守大學學報,6,31~43。