(3.230.173.249) 您好!臺灣時間:2021/04/18 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹凱博
研究生(外文):Kai-Po Chan
論文名稱:光纖光柵感測器於壓力量測之應用
指導教授:單秋成單秋成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:58
中文關鍵詞:光柵壓力感測器
外文關鍵詞:pressuresensor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:424
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
一般量測脊椎椎間盤內壓力的感測器是以電阻式應變計作為傳感元件,此技術的缺點為應變計具有一定的尺寸,因此被測者會有一定的損傷與不適之威脅,此外,應變計式壓力感應器在體內使用有絕緣的問題及觸電的危險,其輸出的電壓訊號容易被其他醫療儀器所發出的電磁雜訊干擾。
有鑑於目前所用的侵入式壓力量測器之缺點,故本文旨在發展出一尺寸較小,且結構較為強韌亦較便宜之感測器,本實驗以光纖光柵為傳感元件,將最主要的感測部份置於一般醫療用之ST不鏽鋼針管內,並透過一將壓力與光纖光柵應變轉換之機制以達到壓力感測之目的,更達到可以深入量測壓力之效,由於光纖的尺寸只有62.5-125μm大小,故可將感測器整體的管徑縮小至0.7mm以下,而且也沒有電流、電磁波的干擾影響。本實驗以複動式油壓缸模擬壓力系統,並施以外力改變其內部液體壓力,用以校正本實驗之壓力感測器。本實驗所採用的薄膜型感測器對於壓力之量測線性度R2有0.99以上,其誤差範圍在1%之內。以光柵彎曲變形為感測機制的薄膜1型感測器之精度為40Hg,雖然在使用上其精度不敷使用,然而其所能容忍之壓力範圍相當之大,可至2MPa以上,而薄膜2型感測器之精度為壓力量測範圍至少有300 KPa,約為2280 mmHg,其精度有1.6mmHg,已經不下於許多市面上所販售之侵入式血壓量測儀。
目錄
摘要..................................................................................................................1
目錄..........................................................................................................2
圖目錄.......................................................................................................4
第一章 緒論.....................................................................................................6
1-1 前言...................................................................................................6
1-2 實驗研究動機.....................................................................................6
1-3 論文架構............................................................................................6
第二章 光纖與光纖光柵感測器.......................................................................8
2-1 光纖的基本介紹..................................................................................8
2-1-1 波導 (Wave guide) .............................................................................8
2-1-2 光纖 (Optical fiber)............................................................................8
2-1-3 光纖的種類.........................................................................................8
2-2 光纖光柵............................................................................................9
2-2-1 光纖光柵的原理與製作......................................................................9
2-2-2 短週期光纖光柵(short period fiber grating) ....................................10
2-2-3 長週期光纖光柵(long period fiber grating) .....................................10
2-2-4 波長漂移與應變關係理論[1].............................................................11
2-2-5 波長漂移與溫度關係理論................................................................11
2-2-6 短周期光纖光柵受不均勻應變場頻譜劈裂現象[3]........................11
2-3 光纖感測器.......................................................................................12
2-4 顱內壓力量測文獻............................................................................13
2-5 光纖感測器應用於壓力量測..............................................................13
2-5-1 市售壓力感測器的規格...................................................................14
第三章 實驗原理以及相關元件.....................................................................23
3-1 壓力感測器的工作原理及其製作方式...............................................23
3-1-1 活塞型壓力感測器...........................................................................23
3-1-2 薄膜型壓力感測器1 型...................................................................23
3-1-3 薄膜型壓力感測器2 型....................................................................24
3-2 實驗相關設備及元件介紹.................................................................24
3-2-1 液壓式萬能材料試驗機 (810 Material Test System) .....................25
3-2-2 光學頻譜分析儀 型號MS9710C ...................................................25
3-2-3 光柵攝譜儀 (FBGIS) 型號 FBGIS, Version 3-3129 .....................25
3-2-4 光纖熔接機 (Splicer) 型號 S199S-0237 .......................................25
3-2-5 EDFA 光源.........................................................................................25
3-2-6 複動薄型油壓缸 型號CXHC.........................................................25
3-3 實驗方法與實驗流程........................................................................25
第四章 實驗結果與討論.................................................................................31
4-1 不同型壓力感測器的靜態壓力校正結果............................................31
4-1-1 活塞型壓力感測器的靜態壓力校正結果.......................................31
4-1-2 薄膜型壓力感測器1 型的靜態壓力校正結果...............................31
4-1-3 薄膜型壓力感測器2 型的靜態壓力校正結果...............................32
4-1-4 本節小結...........................................................................................32
4-2 提升靈敏度的方法............................................................................33
4-2-1 薄膜1 型改善方法...........................................................................33
4-2-2 薄膜2 型改善方法...........................................................................34
4-3 感測器之於動態壓力量測的表現.......................................................34
4-3-1 薄膜型壓力感測器1 型的動態壓力校正結果................................34
4-3-2 薄膜型壓力感測器2 型的動態壓力校正結果...............................34
4-4 光纖光柵壓力感測器於實際應用之模擬............................................35
4-4-1 薄膜1 型應用於脊椎椎間盤壓力量測...........................................35
4-4-2 薄膜2 型應用於血壓量測...............................................................35
4-5 本章小結..........................................................................................36
第五章 結論與未來展望.................................................................................53
5-1 結論.................................................................................................53
參考文獻........................................................................................................55
[1]. 吳曜東: 光纖原理與應用,全華科技圖書股份有限公司,台北,2001.
[2]. 郭原宏,“光纖光柵感測器於結構監測之應用”,國立台灣大學土木工程學系研究所碩士論文,2000
[3]. Lin, C.L.“Opto-Mechanical Applications of Microstructured Materials.” PhD thesis, Joseph Fourier University /National Taiwan University, 2004
[4]. Pollintine P, Przybyla, Dolan P, Adams MA.“Neural arch load-bearing in old and degenerated spines.”J Biomech 2004;37:197-204.
[5]. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE.“New in-vivo measurements of pressures in the intervertebral disc in daily life.”Spine 1999;24:755-62
[6]. Nachemson A. “In vivo discometry in lumbar discs with irregular necleograms. Some differences in stress distribution between normal and moderately degenerated discs.” Acta Orthop Scand. 1965:36(4):418-34.
[7]. Glos D , Bylski-Austrow D , Papautsky I.“Pressure sensors for in vivo measurements on spinal growth plates Sauser,” Conference Proceedings. 26th Annual International Conference of the Volume 1, 2004 Page(s):2430 - 2433 Vol.4
[8]. McNally DS, Shackleford IM, Goodship AE, Mulholland RC.“In vivo stress measurement can predict pain on discography.”Spine 1996;21(22):2580-7.
[9]. Pollintine P, Przybyla A.S, Dolan P, Adams M.A.“Neural arch load-bearing in old and degenerated spines.” Journal of Biomechanics 37 pp. 197–204 2004.
[10]. Kodl G.“A new optical waveguide pressure sensor using evanescent field”Electronic Components and Technology, 2004. Vol. 2, pp.1943 – 1946, 2004
[11]. Rao Y.J , Jackson D.A , Jones R , Shannon C.“Development of prototype fiber-optic-based Fizeau pressure sensors with temperature compensation and signal recovery by coherence reading.”Journal of Lightwave Technology, Vol. 12, Issue 9, pp. 1685 – 1695, 1994
[12]. Tenerz L, Hok B.“0.5mm diameter pressure sensor for biomedical applications.”Transducers ’87 Tokyo, Japan, June 2-5 ,1987.
[13]. Tenerz L., Smith L , Hok B.“A fiberoptic silicon pressure microsensor for measurements in coronary arteries.”
[14]. Edvard C, Denis D. ”Miniature fiber-optic pressure sensor with a polymer diaphragm.”Applied Optics, Volume 44, Issue 14, 2736-2744 ,May 2005.
[15]. Kentaro Totsu, Yoichi Haga , Masayoshi Esashi.“Ultra-miniature fiber-optic pressure sensor using white light interferometry.”Received 11 May 2004, in final form 2 August 2004 Published 8 October 2004.
[16]. Cripton A, Dumas G.A, Nolte L.P.“A novel technique for measuring in vitro pressure in cervical intervertebral discs.” Presented at NACOB 98. Canada August 14-18, 1998.
[17]. 林昭甫,“取樣式光纖光柵感測器同時溫度、應變分離系統”,國立台灣大學機械工程學系研究所碩士論文,2004
[18]. Shui-Ling Lam, Kin-Man Yip, C. S. Shin and C.C. Chiang, 2004 "Feasibility study on using optic fiber pressure senor for intradiscal pressure measurement", 11th Congress of the International Musculoskeletal Laser Society held between May, Seoul, Korea (abstract p237)
[19] Wlodarczyk, Marek T, Vokovich, Daniel.“Fiber optic pressure sensor systems.”United States Patent. 5,385,053
[20] Hay, Arthur D , Kersey, Alan D.“Fiber optic bragg grating pressure sensor.”United States Patent. 6,278,811
[21] Wlodarczyk, Marek T, Anderson, Charles D.“Fiberoptic blood pressure and oxygenation sensor.”United States Patent. 5,280,786
[22] Berg, Arne.“Pressure sensor.”United States Patent. 6,321,603
[23] Bohnert, Klau, Brandle.“Pressure sensor with fibre-integrated bragg grating, comprising an integrated temperature sensor with fibre-integrated bragg grating.”United States Patent. 6,563,970
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔