Chap. 1
[1]http://nano.nchc.org.tw/aboutnano.php(奈米科學網)
[2]http://nano.nsc.gov.tw/main/1/1_01.html(科技年鑑奈米網)
[3]呂英治, 洪敏雄, “奈米製造技術”, 科學發展, 374, 66, 2004
[4]http://www.dai.ed.ac.uk/homes/cam/IAS_docs/RWRTW.html
[5]Takashi Ito, Shinji Okazaki, “Pushing the limits of lithography,” Nature, Vol. 406, August 31, 2000.
[6]“The Intel Lithography Roadmap”, Intel Technology Journal, Vol. 06, Issue 02, ISSN 1535766, May 16, 2002.
[7]T. W. Ebbesen, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667, 1998.
[8]H. J. Lezec, et al, “Beaming Light from a Subwavelength Aperture,” Science, 297, 820, 2002.
[9]李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 1999.
Chap. 2
[10] http://www-groups.dcs.st-and.ac.uk
[11] http://micro.magnet.fsu.edu/primer/index.html
[12] 莊達人, ”VLSI製造技術”, 高立圖書有限公司, 2002.
[13] F.A. van Vught, NEAR-FIELD OPTICAL MICROSCOPY: TOWARDS THE MOLECULAR SCALE, Anthonius Gerardus Theodorus Ruiter, Wageningen, December 10, 1968.
[14]E. Abbe, “Betrage zur Theorie der Microscope und der Microscopischen Wahrehmung,” Arch. Mikrosk. Anst 9, 413, 1873.
[15] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev., 66, 163, 1944.
[16] http://micro.magnet.fsu.edu/primer/techniques/nearfield/nearfieldint o.html
[17] T. W. Ebbesen, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667, 1998.
[18] F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B, 67, 155314, 2003.
[19] Fadi Issam Baida, et al., ”Enhanced confined light transmission by single subwavelength apertures in metallic films,” Applied Optics, Vol. 42, No. 34, December 1, 2003.
[20] K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc., Vol. 210, June 3, 2003.
[21] K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-field for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys., Vol. 95, No. 7, April 1, 2004.
[22] K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Optics Communications, 233, 231-244, January 16, 2004.
[23] Vitality Lomakin, et al., “Enhanced Transmission Through Two-Period Arrays of Subwavelength Holes,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, Vol. 14, No. 7, July, 2004.
[24] Matthew J. Lockyear, et al., “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett., Vol. 84, No. 12, March 22, 2004.
[25] S Sena Akarca-Biyikli, et al., “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A: Pure Appl. Opt. 7, January 20, 2005.
[26] H. J. Lezec, et al, “Beaming Light from a Subwavelength Aperture,” Science, 297, 820, 2002.
[27] Esteban Moreno, et al., “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, March 9, 2004.
[28] E. Hecht, OPTICS. 4th ed, Addison Wesley, pp. 127-131, 2002.
[29] Pochi Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
[30] H. Raether, Surface Plasmons, Springer Berlin, 1988.
[31] L. Lalanne, and M. Hutley, “Artificial Media Optical Properties-Subwavelength Scale,” Encyclopedia of Optical Engineering, Marcel Dekker, Inc., New York, 2003.
[32] M. Born, and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 2002.
Chap. 3
[33] T. K. Gaylord, et al., Prod. IEEE 73, 894, 1985.
[34] K. S. Kunz, et al., The finite difference time domain method for electromagnetics, CRC Press, Boca Raton, Florida, 1993.
[35] 陳怡君, 介電奈米表面結構與金屬材料之互動所引致指向性射出研究: 奈米直寫儀光學頭之創新設計, 國立台灣大學應用力學所碩士論文, 2004.[36] T. W. Ebbesen, et al., “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett., Vol. 92, No. 10, March 12, 2004.
[37] Charles Kittel, Introduction to Solid State Physics, 6th ed John Wiley & Sons, 1986.
[38] Pill-Soo Kim, et al., “Surface-plasmon photonic band gaps dielectric gratings on a flat metal surface,” J. Appl. Phys., Vol. 94, No. 1, July 1, 2003.
[39] J. R. Sambles, et al., “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, September 1, 1996.
[40] J. B. Pendry, et al., “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett., Vol. 83, No. 14, October 4, 1999.
Chap. 4
[41] 李鎮瑋, 一步成型奈米壓印及模具之介電光學頭設計與研製, 國立台灣大學工程科學及海洋工程所碩士論文, 2005.Chap. 5
[42] Volodymyr M Fitio and Yaroslav V Bobitski, “Resonance effects in a dielectric grating; total absorption of electromagnetic waves by a dielectric grating on metal system,” J. Opt. A: Pure Appl. Opt. 6, September 6, 2004.