跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧宏旭
研究生(外文):Hong-She Teng
論文名稱:質子交換膜燃料電池陰極氣體擴散層內的兩相流傳輸分析
論文名稱(外文):Two-Phase Flow Analysis of Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells
指導教授:陳發林陳發林引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:69
中文關鍵詞:質子交換膜燃料電池氣體擴散層兩相流
外文關鍵詞:PEM fuel cellgas diffusion layertwo-phase flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池是目前最被看好的新型替代能源之ㄧ,尤其是在汽車應用方面。然而目前尚未廣泛商業化,主要原因是因為當電池在高電流密度時,反應產生的水會阻礙燃氣傳輸,其中又以陰極最為嚴重,因此如何提升電池的性能是非常重要的。本研究主要探討質子交換膜燃料電池陰極氣體擴散層內的兩相流傳輸現象,利用數值方法求解出燃料電池陰極氣體擴散層內液態水飽和度分佈、氧氣濃度分佈以及性能曲線。研究中發現當考慮兩相流模式時,反應產生的液態水會降低氣體擴散層內的有效孔隙度並阻礙燃氣傳輸。當氣體擴散層的疏水性越好時,反應產生的水較易藉由毛細力排除,對於電池性能的影響就越小。孔隙度較小以及氣體擴散層厚度較厚時,質傳損失會較早發生,此外由於氣體擴散層內的液態水較多,對於電池的影響也較明顯。當流道過長或是入口流速較低時,質傳損失也較早發生,而當電流密度就越高,由於反應產生的液態水越多,對於電池的影響就會越大。
The proton exchange membrane (PEM) fuel cell is most anticipated among several kinds of substitute energy, particularly in the area of automotive technology. However, at high current density liquid water will hinder oxygen transport to reaction site especially in the cathode side and make them unrealistic for widely commercialization up to the present. How to improve the cell performance is very crucial. The study focuses on transport phenomena of cathode gas diffusion layer of PEM fuel cell by using two-phase flow model. Liquid water saturation and oxygen concentration profile in gas diffusion layer and polarization curve are investigated by numerical simulations. Results show that liquid water due to chemical reaction reduces effective porosity of gas diffusion layer and hinders oxygen transport to reaction site. When the gas diffusion media is more hydrophobic, the liquid water removal rate by the capillary force is faster. With the decreasing GDL porosity or the thicker GDL thickness, the mass transport limitation takes place at lower current density. Besides, since liquid water saturation in gas diffusion layer is higher, liquid water effect on the cell performance becomes more significant. With the longer channel length or the slower inlet velocity, the mass transport limitation also takes place at lower current density. And with the increasing current density, liquid water effect on the cell performance becomes more significant.
Abstract (in Chinese)..……………………………...………………….….Ⅰ
Abstract……………………………………………..……………….........Ⅱ
Content….………………………………………………………………...ⅣList of tables……………………..…………………………….……...…..ⅥList of figures………………………………………………………...…...ⅦNomenclature………………………………………………………..……Ⅸ

1. Introduction….………………………………………………………1
1.1 The History of Fuel Cells………………………………………….1
1.2 Fuel Cells – Basic Principle……………………………………….2
1.3 Fuel Cell Types………………………………………………….3
1.4 Literature Review…………………………………………………4
1.5 The Objective of This Study……………………………………..19
2. Mathematical model………………………………………………..24
2.1 Basic Assumptions……………………………………………….24
2.2 Governing equation………………………………………………25
2.2.1 mixture parameters………….………………………...………26
2.2.2 water transport…...………….…………………………...……28
2.2.3 oxygen transport…………….……………………………...…30
2.3 Boundary Conditions……………………………………………32
2.4 Polarization curve……..…………………………………………33
3. Results and discussion………...……………………………………..38
3.1 Effect of GDL contact angle………..………………………….38
3.2 Effect of current density……….…………………………………40
3.3 Effect of GDL porosity……….…………………………………41
3.4 Effect of GDL thickness……..………………………………….43
3.5 Effect of inlet velocity………...…………………………………44
3.6 Effect of channel length……….…………………………………46
4. Conclusion and future work……….………………………………..64
5. References…..………………………………………………………..66
1.J. Larminie, A. Dicks, “Fuel Cell Systems Explained,” Wiley, UK, 2000.
2.P. Costamagna, and S. Srinivasan, “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part I. Fundamental Scientific Aspects,” J. Power Sources, 102(1-2) 2001, pp. 242-252.
3.P. Costamagna , and S. Srinivasan, “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part II. Engineering, Technology Development and Application Aspects,” J. Power Sources, 102(1-2) 2001, pp. 253-269.
4.D.M. Bernardi, “Water-Balance Calculations for Solid-Polymer- Electrolyte fuel cells,” J. Electrochem. Soc., 137(11)1990, pp.3344-3 350.
5.D.M. Bernardi, and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AIChE Journal, 37(8) 1991, pp. 1151-1163.
6.D.M. Bernardi, and M.W. Verbrugge, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., 139(9) 1992, pp.2477-2490.
7.T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., 138(8) 1991, pp.2334-2342.
8.T.E. Springer, M.S. Wilson, and S. Gottesfeld, “Modeling and Experimental Diagnostics in Polymer Electrolyte Cells,” J. Electrochem. Soc., 140(12) 1993, pp.3513-3526.
9.T.F. Fuller, and J. Newman, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., 140(5) 1993, pp.1218-1225.
10.A. Rowe, and X. Li, “Mathematical Modeling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 102 2001, pp. 82-96.
11.D. Singh, D.M. Lu, and N. Djilali, “A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,” Int. J. Engineering Sciences, 37(4) 1999, pp.431-452.
12.H. Dohle, A.A. Kornyshev, A.A. Kulikovsky , J. Mergel, and D. Stolten, “The current voltage plot of PEM fuel cell with long feed channels,” Electrochemistry Communications , 3 2001, pp.73- 80
13.M. Wohr, K. Bolwin, and W. Schnurnberger, M. Fischer, W. Neubrand and G. Eigenberger, “Dynamics Modelling and Simulation of A Polymer Membrane Fuel Cells Including mass transport limitation,” Int. J. Hydrogen Energy,23(3) 1997, pp.213-218.
14.J.J. Baschuk, and X. Li, “Modeling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding,” J. Power Sources, 86 2000, pp. 181-196.
15.L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, and M. Forsyth, “Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance,” J. Power Source,86 2000, pp. 250-254..
16.C. Lim, and C.Y. Wang, “Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell,” Electrochimica Acta 49 2004, pp.4149-4156.
17.J.S. Yi, and T.V. Nguyen, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc., 146(1) 1999, pp. 38-45.
18.W. He, J.S. Yi, and T.V. Nguyen, “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AICHE Journal, 46(10) 2000, pp. 2053-2064.
19.D. Natarajan, and T.V. Nguyen, “A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochem. Soc., 148(12) 2001, pp. 1324-1335.
20.T. Berning, D.M. Lu, and N. Djilali, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Source,106 2002, pp. 284-294.
21.T. Berning, and N. Djilali, “A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell,” J. Electrochem. Soc., 150(12) 2003, pp. 1589-1598.
22.J.H. Nam, and M. Kaviany, “Effective Diffusity and Water-Saturation Dsitribution in Single- and Two-Layer PEMFC Diffusion Medium ,” Int. J. Heat Mass Transfer, 46 2003, pp.4595-4611
23.N.P. Siegel, M.W. Ellis, D.J. Nelson, and M.R. von Spakovsky, “A Two-Dimensional Computational Model of a PEMFC with Liquid Water Transport,” J. Power Sources, 128 2004, pp. 173-184.
24.C.Y. Wang, and P. Cheng, “A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I.Model Development,” Int. J. Heat Mass Transfer, 39(17) 1996, pp.3607-3618
25.Z.H. Wang,C.Y. Wang, and K.S. Chen, “Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells,” J.Power Sources, 94 2001, pp. 40-50.
26.L. You, and H. Liu, “A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells,” Int. J. Heat Mass Transfer, 45 2002, pp.2277-2287.
27.U. Pasaogullari, and C.Y. Wang, “Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 151(3) 2004, pp. 399-406.
28.U. Pasaogullari, and C.Y. Wang, “Two-Phase Transport and the Role of Micro Porous Layer in Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 49 2004, pp.4359-4369.
29.S.W. Cha, R. O’Hayre, S.J.Lee, Y.Saito, and F. B. Prinz, “Geometric Scale Effect of Flow Channels on Performance of Fuel Cells,” J. Electrochem. Soc., 151(11) 2004, pp. 1856-1864.
30.F.P. Incropera, and D.P. DeWitt, “Fundamentals of Heat and Mass Transfer, ” Wiley, New York,1996
31.Merle C. Potter, and David C. Wiggert , “Mechanics of Fluids ,”Brooks cole, USA,2002
32.M.C. Leverett, “Capillary Behavior in Porous Solids ,” Trans.AIME , 142 1941, pp.152-169
33.M. Kaviany, “Principle of Heat Transfer in Porous Media ,” Springer, New York,1995
34.George Lindfield, and John Penny, “Numerical Methods Using Matlab ,” Prentice Hall, 1999
35.W.H. Press, B. P. Flannery, S. A. Teukolsky, and W.T. Verrerling, “Runge-Kutta Method and Adaptive Step Size Control for Runge-Kutta,’’ The Art of Scientific Computing, Cambridge University Press, UK, 1992.
36.http://www.cnn.com/US/9710/27/fuel.cells/
37.http://www.navc.org/Perth.html
38.http://www.fuelcells.org/
39.http://www.diebrennstoffzelle.de/h2projekte/mobil/necar.shtml
40.http://www.toyota.co.jp/en/tech/environment/fchv/
41.http://www.gm.com
42.http://www.ford.com
43.http://www.luk-korbmacher.de/ Autos/fcx1.htm
44.http://www.nissan-global.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top