(3.236.231.14) 您好!臺灣時間:2021/04/15 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃啟銘
研究生(外文):Chi-Ming Huang
論文名稱:仿生撲翼之受力與流場量測
論文名稱(外文):The Measurement of Force and Flow field for Biomimetic Flapping wing
指導教授:朱錦洲
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:93
中文關鍵詞:撲翼微型飛行器力量粒子影像測速儀
外文關鍵詞:Flapping wingMAVForcePIV
相關次數:
  • 被引用被引用:4
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本文著力於仿生撲翼受力與流場量測研究,受力量測方面,透過簡單撲翼機制模擬,量測撲翼上之受力變化,並改變整體拍速與拍幅,觀察其間之改變,此外在上下不同拍速之拍動設定下,以下拍速快上拍速慢的撲翼運動,發現在上下拍動的週期中有淨升力的產生,在流場量測方面,透過使用 PIV流場量測系統,觀察撲翼上下拍動所產生的流場變化,包括速度分佈變化、流線分佈變化與渦度分佈變化,輔以真實流場拍攝以及PTV分析方法來驗證流場量測的準確性。以上實驗中之受力與量測結果將確立為未來同數值模擬成果比對之實驗參數資料。
目錄

摘要…………………………………………………………………………………2
目錄…………………………………………………………………………………3
符號說明……………………………………………………………………………5
圖表目錄……………………………………………………………………………6

第一章 導論…………………………………………………………………………10
1-1 前言……………………………………………………………………………11
1-2 文獻回顧………………………………………………………………………12
1-3 研究動機與目的………………………………………………………………14

第二章 實驗設備與實驗方法……………………………………………………16
2-1 實驗設備………………………………………………………………………16
2-1-1 實驗水槽………………………………………………………………16
2-1-2 流場運動模擬與控制系統……………………………………………16
2-1-3 受力訊號量測裝置……………………………………………………17
2-1-3-1 力量感測負荷計……………………………………………17
2-1-3-2 應變規………………………………………………………17
2-1-3-3 全橋電橋受力輸出…………………………………………18
2-1-3-4 受力感測校正與轉換………………………………………19
2-1-4 訊號擷取裝置…………………………………………………………20
2-1-5 PIV流場量測系統……………………………………………………21
2-2 實驗方法………………………………………………………………………23
2-2-1 運動模擬設定…………………………………………………………23
2-2-2 實驗步驟………………………………………………………………23

第三章 理論與實驗分析基礎……………………………………………………27
3-1 雷諾數估算……………………………………………………………………27
3-2 粒子影像測速儀(PIV)…………………………………………………………28
3-3 粒子追蹤測速法(PTV)………………………………………………………30

第四章 實驗結果與討論……………………………………………………………31
4-1 流場雷諾數估算………………………………………………………………31
4-2 受力量測………………………………………………………………………32
4-2-1 撲翼受力變化…………………………………………………………32
4-2-3 轉動慣量之影響………………………………………………………33
4-2-4 整體拍速與拍幅改變…………………………………………………34
4-2-3-1 同一拍幅下改變拍速………………………………………34
4-2-3-2 同一拍速下改變拍幅………………………………………34
4-2-3-3 上下拍速改變………………………………………………35
4-3 流場量測………………………………………………………………………35
4-3-1 流場拍攝………………………………………………………………35
4-3-2 PIV與PTV分析結果比對……………………………………………37
4-3-3 流場速度與流線時序變化……………………………………………37
4-3-3-1 撲翼第一週期下拍起始之翼面速度變化…………………39
4-3-3-2 撲翼第一與第二週期下拍起始之翼面速度比較…………40
4-3-4 流場渦度時序變化……………………………………………………40
4-3-4-1 撲翼第一與第二週期之負渦漩變化………………………41
4-3-4-2 撲翼第一與第二週期之正渦漩變化………………………41

第五章 結論與未來展望…………………………………………………………43
5-1 結論……………………………………………………………………………43
5-2 未來展望………………………………………………………………………44

參考文獻……………………………………………………………………………45
圖表說明……………………………………………………………………………47
參考文獻

1.T.Weis-Fogh and M.Jensen, Proc.R.Soc.London B, 239,415(1956).

2.Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230.

3.Lighthill, M. (1973). On Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1-17.

4.Norberg, R. (1975). Hovering flight of the dragonfly, Aeschna juncea L., kinematics and aerodynamics. In Swimming and Flying in Nature, vol. 2 (ed. T. Wu, C. Brokaw and C. Brennen), pp. 763-781. New York: Plenum Press.

5.Bennett, L. (1977). Clap and fling aerodynamics – an experimental evaluation.J. Exp. Biol. 69, 261-272.

6.Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47-63.

7.Savage, S., Newman, B. and Wong, D. (1979). The role of vortices and unsteady effects during the hovering flight of dragonflies. J. Exp. Biol. 83, 59-77.

8.Spedding, G. R. and Maxworthy, T. (1986). The generation of circulation and lift in a rigid two-dimensional fling. J. Fluid Mech. 165, 247-272.

9.Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79-113.

10.Ellington, C. P., Van den Berg, C., Willmott, A. P. and Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626-630.
11.Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro- air vehicles. J. Exp. Biol. 202, 3439-3448.

12.Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45–64.

13.Dickinson, M. H., Lehmann, F.-O. and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960.

14.Birch, J. M. and M. H. Dickinson (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848): 729-733.

15.Sane, S. P. and M. H. Dickinson (2001). The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 204(15): 2607-2626.

16.James M. Birch, William B. Dickson.and Michael H. Dickinson.. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers J. Exp. Biol., March 1,(2004); 207(7): 1063 – 1072

17.Micro Air Vehicles - Toward a New Dimension in Flight - James M. McMichael Program Manager Defense Advanced Research Projects Agency and Col. Michael S. Francis, USAF (Ret.) formerly of Defense Airborne Reconnaissance Office -- 8/7/97

18.Sane, S. P. (2003),Review - The aerodynamics ofinsect flight, J. Exp. Biol. 206, 4191-4208

19.朱錦洲、謝政達 2004 “運用PIV與PTV量測技術於單一渦漩生成之研究”,國立臺灣大學應用力學研究所碩士論文

20.王安邦、薛嘉賢 2002 “仿昆蟲拍翅飛行載具之轉翅時機實驗研究”,
國立臺灣大學應用力學研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔