(3.230.76.48) 您好!臺灣時間:2021/04/12 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方乃祥
研究生(外文):Nai-Siang Fang
論文名稱:無膜燃料電池流場分析與性能設計
論文名稱(外文):The Flow Analysis and Performance Design of Membraneless Fuel Cells
指導教授:陳發林陳發林引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:80
中文關鍵詞:無膜燃料電池裴立數
外文關鍵詞:MembranelessFuel CellsPeclet Number
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對一新穎無膜燃料電池(Membraneless Fuel Cells)內部傳輸現象以及電池性能作一完整之分析與比較,並利用商業套裝軟體CFDRC進行模擬。研究中係以有限體積法(Finite Volume Method)求解各統御方程式,探討當改變不同操作與幾何參數時,無膜燃料電池內部之流場分布、濃度場分布以及輸出電流密度變化情形,此舉將有助於釐清各參數對整體燃料電池性能之影響,幫助實驗設計者做出最正確之判斷。
本論文研究結果得知,當流場操作條件為高裴立數(High Peclet Number)時,將有效降低濃度邊界層厚度,亦即濃度補充迅速,輸出電流密度將增加。細部來看,電池內部陰極側傳輸現象主導了整體性能變化,而陽極側傳輸現象相較之下較不明顯,故增加陰極側氧化物之濃度與擴散係數時,電池性能將大大地提升;而增加陽極燃料動黏滯係數時,陰極氧化物之裴立數也將增加,因此性能也較佳。就幾何參數來看,在固定體積流率時,縮小流道截面積將有助於裴立數之增加,進而提升電池性能;而改變截面積之長-寬比時,若能因此減少截面積並且增加裴立數,在雙重影響下,電池性能也將大幅地提升。
This thesis is to analyze and evaluate the phenomena of the internal transmission of novel membraneless fuel cells as well as the cell performance. Relevant simulations are accomplished by commercial software CFDRC, which solves governing equations through finite volume method. Internal flow field, concentration field, and current density under different operating and geometric parameters are simulated to clarify the effects of those parameters on cell performance. Conclusions could be helpful for the experiments.
Resulting from simulations, high Peclet number decreases the thickness of the concentration boundary layer, current density could be increased. In detail, cathode transmission dominates whole performance where anode one works a little. Therefore, increasing oxidant concentration and diffusion coefficient elevates the cell performance quite well. A larger kinematic viscosity of the fuel also augments oxidant’s Peclet number to improve the performance. Geometrically, when flow rate is fixed, shrunk cross section area of the channel provides better performance for enlarged Peclet number. Altering aspect ratio of the cross section area to bring down area and bring up Peclet number shall be improving the cell performance greatly.
目錄
中文摘要 I
英文摘要 II
表目錄 III
圖目錄 III
符號說明 VII
第一章 序論 1
1.1 前言 1
1.2 燃料電池簡介 2
1.2.1 燃料電池之發展 2
1.2.2 燃料電池之工作原理 3
1.2.3 燃料電池之極化現象 4
1.3 燃料電池種類 6
1.4 文獻回顧 7
1.5 研究動機 8
第二章 理論分析 12
2.1 無膜燃料電池工作原理 12
2.2 統御方程式 14
2.2.1 速度場分析 14
2.2.2 濃度場分析 16
2.2.3 電場分析 17
2.3 邊界條件 18
第三章 數值方法 23
3.1 有限體積法 23
3.2 有限差分法方程式 26
3.3 收斂標準 26
3.4 格點測試 27
第四章 結果與討論 30
4.1 平均流速變化之影響 30
4.1.1 速度場分析 31
4.1.2 濃度場分析 32
4.1.3 電池性能分析 33
4.2 濃度變化之影響 34
4.2.1 電池性能分析 34
4.3 擴散係數變化之影響 35
4.3.1 濃度場分析 36
4.3.2 電池性能分析 36
4.4 動黏滯係數變化之影響 37
4.4.1 速度場分析 37
4.4.2 濃度場分析 38
4.4.3 電池性能分析 38
4.5 動黏滯係數與擴散係數混合變化之影響 39
4.5.1 電池性能分析 39
4.6 流道截面積變化之影響 40
4.6.1 電池性能分析 40
4.7 流道截面高-寬比變化之影響 40
4.7.1 電池性能分析 41
第五章 結論與未來展望 62
5.1 總結 62
5.2 未來研究方向與建議 63
參考文獻 64
附錄 66
電化學,萬其超,商務印書局,1992.
Rosaria Ferringno, Abraham D. Strook, Thomas D. Clark, Michael Mayer, and George M. Whitesides, “Membraneless Vanadium Redox Fuel Cell Using Laminar Flow.” J. AM. CHEM. SOC. 124 (2002) 12930-12931.
Eric R. Choban, Larry J. Markoski, Andrzej Wieckowski, Paul J. A. Kenis, “Microfluidic fuel cell based on laminar flow.” J. Power Sources 128 (2004) 54-60.
Rustem F. Ismagilov, Abraham D. Stroock, Paul J. A. Kenis, and George M. Whitesides, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels.” Appl. Phys. Lett. 76 (2000) 2376-2378.
M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. K. T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, D. T. Burke, Science 282 (1998) 484-487.
B. H. Wiegl, J. Kriebel, K. J. Mayes, T. Bui, P. Yager, Mikrochim. Acta 131 (1999) 75-83.
K. Macounova, C. R. Cabrera, M. R. Holl, P. Yager, Anal. Chem. 72 (2000) 3745-3751.
K. Macounova, C. R. Cabrera, P. Yager, Anal. Chem. 73 (2001) 1627-1633.
P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, Science 285 (1999) 83-85.
R. B. Bird, W. E. Stewart, E. N. Lightfoot, “Transport Phenomena.” New York: J. Wiley, 2nd ed, 2002.
David. R. Lide, “CRC handbook of chemistry and physics.” CRC Press, 1990.
J. O''M. Bockris, B. E. Conway, “Modern aspects of electrochemistry.” New York: Plenum Press, no.4 (1966).
A. Capon, R. Parsons, “Electroanalytical Chemistry and Interfacial Electrochemistry.” 43 (1973) 205-231.
H. C. Metcalfe, J. E. Williams, J. F. Castka, “Modern Chemistry.” Holt, Rinehart and Winston, Inc., New York, 1970, pp. 412.
CFD-ACE(U) User Manual, Version 2003, CFD research corporation (2003).
David. K. Cheng, “Field and Wave Electromagnetics.” Pearson Education Taiwan Ltd, 2nd ed, 1996.
J. Larminie, A. Dicks, “Fuel Cell Systems Explained.” John Wiley & Sons, Chichester, UK, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔