(3.227.235.183) 您好!臺灣時間:2021/04/13 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:連益慶
研究生(外文):I-Ching Lien
論文名稱:壓電能量擷取系統之分析研究
論文名稱(外文):Piezoelectric Power Harvesting System
指導教授:舒貽忠
指導教授(外文):Yi-Chung Shu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:94
中文關鍵詞:能量擷取壓電材料能量擷取電路
外文關鍵詞:Power HarvestingPiezoelectric MaterialsHarvesting Circuit
相關次數:
  • 被引用被引用:25
  • 點閱點閱:435
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要從事壓電能量擷取系統之研究與開發,利用壓電懸臂梁將外界振動能量轉化為電能並且儲存。模型之建立則結合壓電力學與電路概念,探討壓電振動子和外部電路之力電耦合行為,並找出最佳化力電耦合機制及介面。
一般文獻在描述壓電振動行為和外部電路之關係時,主要是將壓電振動子簡化成一電流源和電容並聯之簡易模型,然而此方法卻忽略了可能有的力電耦合效應;本論文則應用力平衡原理結合壓電統御方程式推導出一包含壓電效應之偏微分方程式,並藉由模態近似得到一完整之壓電力電耦合統御方程式,再配合商用軟體做完整數值模擬;除此之外,本論文亦用簡易模型推導出全壓電能量擷取系統穩態解,並配合模擬和實驗結果一同比較分析。
實驗部分則利用阻抗分析儀量得統御方程式之各項係數,並連接各種不同的外部電路,和理論模擬比較之後可歸納出:面對力電耦合性質強的材料,完整模型比簡易模型有更高的準確性並解釋了之前用簡易模型所不能解釋的非理想特性。針對於力電耦合性質弱的材料,不論是簡易模型或是穩態解均和完整模型有著相當高的吻合性。
The thesis is to study the development of piezoelectric power harvesting system. The idea is to transfer the vibrating energy of a piezoelectric cantilever beam into the electric energy which can be stored using a series of harvesting circuits. To do it, we develop a harvesting model based on the transformation of the electromechanical coupling energy and use it to find out the key parameters for the optimal design.

The conventional model for piezoelectric power harvesting in literature is to replace the piezoelectric vibrating element with a current source in parallel with its internal electrode capacitance. Such a simplification is questionable since the piezoelectric coupling effect is neglected. On the other hand, we develop a model in this thesis accounting for such coupling effect. We use the technique of eigen-function expansion to derive the governing equations of the piezoelectric vibrator. The whole system is not solvable until the external circuit conditions are included into the vibration equations. In addition, we derive a series of analytic solutions of the model equations and use them to predict the performance of the whole harvesting system.

We also design a series of experiment to validate the harvesting model: the vibrator is connected with several different external loads such as resistance, diodes-capacitance and diodes-capacitance-resistance. Experimental results show that the electromechanical coupling effect has to be taken into account for piezoelectric materials which have large coupling coefficient. The conventional model is suitable only for materials with small piezoelectric coupling coefficient. Finally, we conclude with discussions on the several future directions.
誌謝--------------------------------------------------1
摘要--------------------------------------------------3
Abstract----------------------------------------------4
目錄--------------------------------------------------5
圖目錄------------------------------------------------7
表目錄------------------------------------------------12
第1章 導論-------------------------------------------13
1-1研究動機-----------------------------------------13
1-2文獻回顧-----------------------------------------15
1-3本文架構-----------------------------------------18
第2章 壓電理論及一般電子電路原理---------------------19
2-1壓電材料工作原理---------------------------------19
2-2一般AC to DC Converter工作原理-------------------23
第3章 壓電能量擷取系統之分析-------------------------27
3-1壓電樑數學模型之建立-----------------------------27
3-2壓電懸臂樑之等效電路模型-------------------------35
3-3壓電懸臂樑在外掛各種外部負載下之分析-------------38
Case1對電容充電----------------------------------39
Case2濾波整流後接外部負載------------------------43
Case3波漣電壓分析--------------------------------46
3-4壓電懸臂樑及能量擷取電路之整合分析---------------50
第4章 實驗及理論比較分析-----------------------------58
4-1實驗器材-----------------------------------------58
4-2實驗試件描述及相關材料參數量測-------------------60
4-3振動子接上各種不同外部負載下之實驗及理論分析-----63
Experiment1頻率響應--------------------------------64
Experiment2直接接上外部負載------------------------66
Experiment3整流後對電容充電------------------------69
Experiment4整流濾波後接外部負載--------------------72
4-4壓電能量擷取系統實驗及理論分析-------------------79
第5章 討論及未來展望---------------------------------82
5-1結果討論-----------------------------------------82
5-2未來展望-----------------------------------------84
參考文獻----------------------------------------------88
[1] H. A. Sodano, D. J. Inman and G. Park (2004), A Review of Power Harvesting from Vibration using Piezoelectric Materials. The Shock and Vibration Digest. Vol.36, No.3, p:197-205.

[2] N. G. Elvin, A. A. elivin and M. Spector (2001), A self-powered mechanical strain energy sensor. Smart Mater. Struct. Vol.10, p:293-299.

[3] N. Elvin, A. Elvin and D. H. Choi (2003), A self-powered damage detection sensor. J. Strain Analysis. Vol.38, No.2, p:115-124.

[4] H. A. Sodano, G. Park and D. J. Inman (2004), Estimation of Electric Charge Output for Piezoelectric Energy Harvesting. STRAIN Vol.40, p:49-58.

[5] H. A. Sodano, G. Park, D. J. Leo and D. J. Inman (2003), Model of Piezoelectric Power Harvesting Beam. 2003 ASME International Mechanical Engineering Congress. (Conference)

[6] S. Roundy and P. K. Wright (2004), A Piezoelectric Vibration based Generator for Wireless Electronics. Smart Mater. Struct. Vol.13, p:1131-1142.

[7] N. W. Hagood and A. V. Flotow (1991), Damping of structure vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration. Vol.146, No.2, p:243-268.

[8] N. W. Hagood, W. H. Chung and A. V. Flotow (1990), Modeling of Piezoelectric Actuator Dynamics for Active Structural Control. J. of INTELL. MATER. SYST. AND STRUCT. Vol.1, p:327-354.

[9] R. Lammering and S. M. Rischmann (2003), Multi-field variational formulations and related finite elements for piezoelectric shells. Smart Mater. Struct. Vol.12, p:904-913.

[10] C. G. Xu, T. S. Fiez and K. Mayaram (2003), Nonlinear Finite Element Analysis of a Thin Piezoelectric Laminate for Micro Power Generation. Journal of Microelectromechanical Systems. Vol.12, No.5, p:649-655.

[11] S. Kim, W. W, Clark and Q. M. Wang (2005), Piezoelectric Energy Harvesting with a Clamped Circular Plate : Analysis. Preparing to publish.

[12] S. Kim, W. W, Clark and Q. M. Wang (2005), Piezoelectric Energy Harvesting with a Clamped Circular Plate : Experiment Study. Preparing to publish.

[13] W. H. Liao, D. H. Wang and S. L. Huang (2001), Wireless Monitoring of Cable Tension of Cable-STAYED Bridges Using PVDF Piezoelectric Films. Journal of Intelligent Material Systems and Structurs. Vol.12, p:331-339.

[14] M. Umeda, K. Nakamura and S. Ueha (1997), Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration. Jpn. J. Appl. Phys. Vol.36, p:3146-3151.

[15] M. Umeda, K. Nakamura and S. Ueha (1996), Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibration. Jpn. J. Appl. Phys. Vol.35, p:3267-3273.

[16] H. W. Kim, A. Batra, S. Prity, K. Uchino, D. Markley, R. E. Newnham and H. F. Hofmann (2004), Energy Harvesting Using a Piezoelectric “Cymbal” Transduced in Dynamic Environment. Japanese Journal of Applied Physics. Vol.43, No. 9A, p:6178-6183.

[17] F. Lu, H. P. Lee and S. P. Lin (2004), Modeling and analysis of mocro piezoelectric power generations for micro electromechanical systems application. Smart Mater. Struct. Vol.13, p:57-63.

[18] C. D. Richards, M. J. Anderson, D. F. Bahr and R. F. Richards (2004), Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. Vol.14, p:717-721.

[19] M. Goldfarb and L. D. Jones (1999), On the Efficiency of Electric Power Generation With Piezoelectric Ceramic. Journal of Dynamic System,Measurement,and Control. Vol.121, p:566-571.

[20] C. B. Williams, R. B. Yates (1996), Analysis of a micro-electric generator for Microsystems. Sensors and Actuators. Vol.A52, p:8-11.

[21] C. N. Xu, M. Akiyama, K. Nonaka and T. Watanabe (1998), Electrical Power Generation Characteristics of PZT Piezoelectric Ceramics. IEEE TRANSACTIONS ON ULTRASONICS , FERROELECTRICS , AND FREQUENCY CONTROL. Vol.45, No.4, p:1065-1069.

[22] G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers and T. R. Welsh (2001), The Energy Harvesting Eel : A Small Subsurface Ocean/River Power Generator. IEEE JOURNAL OF OCEANIC ENGINEERING Vol.26, No.4, p:539-547.

[23] W. W. Clark and M. J. Ramsay (2000), Smart Material Transducers as Power Sources for MEMS Device. International Symposium on Smart Structures and Microsystems. (Conference)

[24] M. J. Ramsay, W. W. Clark (2001), Piezoelectric Energy Harvesting for Bio MEMS Application. Smart Structrues and Materials Vol.4332, p:429-438.

[25] T. H. Ng and W. H. Liao (2005), Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structure. (Conference)

[26] S. Roundy, P. K. Wright and J. Rabaey (2003), A Study of low level vibrations as a power source for wireless sensor nodes. Computer Communications. Vol.26, p:1131-1144.

[27] N. M. White, P. G. Jones, S. P. Beeby, M. J. Tudor and M. Hill (2001), Design and modeling of a vibration-powered micro-generator. Measurement+Control. Vol.34, No.9, p:267-271.

[28] T. Funasaka, M. Furuhata, Y. Hashimoto and K. Nakamura (1998), Piezoelectric Generator Using a LiNbO3 Plate with an Inverted Domain. IEEE ULTRASONICS SYMPOSIUM. Vol.1, p:959-962.

[29] N. M. White, P. G. Jones and S. P. Beeby (2001), A novel thick-film piezoelectric micro-generator. Smart Mater. Struct. Vol.10, p:850-852.

[30] A. Badel, D. Guyomar, E. Lefeuvre and C. Richard (2005), Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion. Preparing to publish.

[31] G. K. Ottman, H. Hofmann, A. C. Bhatt and G. A. Lesieuture (2002), Adaptive Piezoelectric Energy Harvesting Circuit for Wireless , Remote Power Supply. IEEE TRANSACTION ON POWER ELECTRICS. Vol.17, No.5, p:669-676.

[32] G. K. Ottman, H. F. Hofmann and G. A. Lesieutre (2003), Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode. IEEE TRANSACTIONS ON POWER ELECTRICS. Vol.18, No.2, p:696-703.

[33] G. A. Lesieutre, H. F. Hofmann and G. K. Ottman (2002), Structure Damping due to Piezoelectric Energy Harvesting. Preparing to publish.

[34] E. Houtroulis, K. Kalaitzakis and N. C. Voulgaris (2001), Development of a Microcontroller-Based , Photovoltaic Maximum Power Point Tracking Control System. IEEE TRANSACTIONS ON POWER ELECTRICS. Vol.16, No.1, p:46-54.

[35] H. A. Sodando, D. J. Inman and G. Park (2005), Generation and Storage of Electricity from Power Harvesting Device. Journal of Intelligent Material Systems and Structrures Vol.16, p:67-75.

[36] I. Oota, N. Hara and F. Ueno (1998), An AC-DC Converter Using a Differential Switched-Capacitor Transformer. IEEE Power Electrics Specialists Conference. (Conference)

[37] Y. Jeon, R. Sood, L. Steyn and S. G. Kim, Energy Harvesting MEMS Devices Based on d33 Mode Piezoelectric Pb(Zr,Ti)O3 Thin Flim Cantilever. Proc. Int’l Conference on Electron ceramics. (Conference)

[38] S. Whalen, M. Thompson, D. Bahr, C. Richards and R. Richards (2002), Design , fabrication and testing of the P3 micro heat engine. Sensors and Actuators. Vol.A104, p:290-298.

[39] D. Young (1950), Vibration of Rectangular Plates by the Ritz Method. Journal of Applied Mechanics. Vol.17, pp.448-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔