(3.230.76.48) 您好!臺灣時間:2021/04/15 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林丞恩
研究生(外文):Cheng-En Lin
論文名稱:內皮細胞增生與流體動力學之相關性
論文名稱(外文):Effect of Hemodynamics on the Proliferation of Endothelial Cells
指導教授:邵耀華
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:62
中文關鍵詞:內皮細胞增生剪應力平行板流體腔聚二甲基矽氧烷
外文關鍵詞:endothelial cells proliferationshear stressparallel plate flow chamber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討血液流體動力學與內皮細胞增生的關係,實驗藉由自製的脈動式流體產生系統,結合聚二甲基矽氧烷(PDMS)等軟性材料,製作脈動平行板流體腔(flow chamber),產生剪應力範圍3~25 、流量範圍約0.1~1.6ml/sec、雷諾數約20~210。另外藉由PDMS A劑與B劑混合的比例不同製作各種硬度的PDMS(E=1.76~0.072 MPa),並在其上培養內皮細胞,探討內皮細胞在不同硬度的軟性材質上時的增生條件,比較流體刺激前與刺激後的差異。

實驗所需的內皮細胞來自胎兒臍帶的靜脈(HUVEC),由台大醫院產房取得,每次實驗的細胞皆用多條臍帶混合,以減少生物體上的誤差,實驗結果顯示未受流體刺激的內皮細胞,在硬度不同的聚二甲基矽氧烷(PDMS)上增生量均不相同,硬度越大增生量越高 (E=1.76 MPa,增生量15.4% ; E=0.072MPa,增生量8.8%),但受到流體刺激後,硬度高與硬度低均有顯著的增生效果 (E=1.76 MPa,增生量44.8% ; E=0.072MPa,增生量44.5%), 另外提高脈動流體剪應力的時間梯度時,增生量亦增加(E=1.76 MPa,增生量56.8%),而流體Womersley number的大小似乎也對內皮細胞增生扮演重要的角色。
This study discussed the effect of hemodynamics on the proliferation of endothelial cells. We designed the pulsatile parallel plate flow chamber which combined PDMS polymer on the chamber bottom. Shear stress range were 3-25 dyne/cm2、flow rate were 0.1-1.6 ml/sec、Re numbers were 20-210. By using different mixture ratio of sylgard 184(A) and curing agent (B), the PDMS polymer can made with different stiffness, the resulted Young’s moduli were about 0.072-1.76 MPa. The endothelial cells were cultured on the PDMS polymer to study the cell proliferation under no flow condition and excited flow with different membrane stiffness.

Human umbilical vein endothelial cells (HUVEC) were obtained from NTUH. to To reduce individual bias the endothelial cells were collected and mixed from more than one umbilical cords in all experiments. Results showed that the endothelial cells proliferation under no flow conditions increases on high stiffness PDMS (E=1.76 MPa, 15.4%; E=0.072MPa, 8.8%). Under excited flow, the cell proliferation for both the high surface-stiffness and low surface-stiffness increased remarkably. (E=1.76 MPa, 44.8%; E=0.072MPa, 44.5%). Besides, the enhanced temporal gradient in shear stress also increases the cell proliferation. It is therefore concluded that the Womersley number seemed to play an important rule on the endothelial cells proliferation.
誌謝..............................................................................................................................Ⅰ
中文摘要......................................................................................................................Ⅱ
英文摘要......................................................................................................................Ⅲ
內文目錄......................................................................................................................Ⅳ
圖目錄..........................................................................................................................Ⅵ
表目錄..........................................................................................................................Ⅸ

第一章 序論................................................................................................................1
1-1 前言.........................................................................................................................1
1-2 研究動機與目的.....................................................................................................2
1-3 文獻回顧.................................................................................................................3
1-3-1 平行板流體腔之相關設計........................................................................3
1-3-2 內皮細胞增生與剪應力之相關研究.......................................................4
1-4 論文架構.................................................................................................................6
第二章 研究方法與設備..........................................................................................10
2-1 脈動式流體系統................................................................................................10
2-1-1 平行板流體腔之製作方法與設計參數.................................................10
2-1-2 流量波之計算.........................................................................................10
2-1-3 剪應力大小之計算.................................................................................11
2-1-4 生理範圍之流體力學相關參數之比對.................................................14
2-1-5 PDMS制模方法與厚度量測..................................................................15
2-1-6 PDMS楊氏模數之量測方法..................................................................................16
2-2 PVDF感測器原理..............................................................................................18
2-2-1 壓電材料之特性.....................................................................................18
2-2-2 PVDF壓電感測器製作方法 .................................................................................19
2-2-3 電荷放大器與電壓放大器.....................................................................19
2-2-4 壓電係數之校正.....................................................................................25
2-2-5 低通濾波器、與60Hz帶阻濾波器.......................................................25
2-2-6 PVDF量測流體之正向應力及剪應力與理論值比對..........................26
2-2-7 LabView資料擷取..................................................................................26
2-3 內皮細胞培養方法與體外溫控螢光顯微系統............................................................29
2-3-1 倒立式螢光顯微鏡與細胞體外培養系統之架構..................................29
2-3-2 內皮細胞培養與生物實驗之流程.........................................................29
2-3-3 內皮細胞增生與定量方法.....................................................................30
第三章 結果與討論..................................................................................................40
3-1 PDMS 楊氏模數之量測結果............................................................................40
3-2 內皮細胞附著狀況之探討.................................................................................42
3-2-1 Vitrogen對細胞附著之影響...................................................................42
3-2-2 流體作用後對細胞貼附之影響..............................................................43
3-3 細胞增生之探討.................................................................................................44
3-3-1 BrdU添加時間與細胞增生量之探討....................................................44
3-3-2 無流體作用下覆蓋PDMS之硬度對細胞增生的影響.........................44
3-3-3 流體作用下覆蓋PDMS的厚度對細胞增生的影響.............................45
3-4-4 有流體作用下覆蓋PDMS之硬度對細胞增生的影響.........................47
第四章 結論及未來研究建議..................................................................................57
4-1 結論.........................................................................................................57
4-2 未來研究建議.........................................................................................59
參考文獻......................................................................................................................60
1.Albuquerque ML (2000). Shear stress enhances human endothelial cell wound closure in vitro. Am J physiol. Heart Circ Physiol 279: H293-H302
2.Armani D (1999). Chang Liu and Narayan Aluru, Re-configurable fluid circuits by PDMS elastomer micromachining. MEMS ''99. 12th IEEE Int Conf.
3.Bao X (2000). Craig B. Clark, and John A. Frangos, Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. AM J Physiol Heart Circ Physiol 278: H1598-H1605
4.Brandley BK (1989). Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide. Dev Biol 1989;135:74–86.
5.Brown DC (2001), Improvements to parallel plate flow chambers to reduce reagent and cellar requirements, BMC immunology
6.Conklin BS (2000). A simple physiologic pulsatile perfusion system for the study of intact vascular tissue. Medical Engineering & Physics 22, pp.441
7.Davies PF (1986). Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro ,cell biology
8.Eric A. Nauman (1999) Quantitative Assessment of steady and pulsatile flow fields in parallel plate flow chamber Annals of biomedical engineering Vol. 27, pp. 194
9.Fangos JA (1985). Flow effects on prostacyclin production by culture human endothelial cell science, new series
10.Gray DS (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus, J Biomed Master Res 66A:605-614
11.Gregory Washington. Introduction to Smart Materials and Intelligent Systems
12.Haidekker MA (2001). Analysis of Temporal Shear Stress Gradients During the Onset Phase of Flow Over a Backward-Facing Step. Journal of biomechanical engineering. 123, no. 5, 455
13.Harrison JS (2001). Piezoelectric Polymers, NASA/CR-2001- 211422I CASE Report No. 2001-43
14.Hsiai TK (2002). Endothelial Cell Dynamics under Pulsating Flows: Significance of High Versus Low Shear Stress Slew Rates. Annals of Biomedical Engineering vol. 30, pp646
15.Lee I (1999). Development of an array of pressure sensors with PVDF film,Experiments in Fluids 26
16.Munson BR (1990). Fundamentals of fluid mechanics 3rd edition
17.Nerem RM (1998). The study of the influence of flow on vascular endothelial biology Am J Med Sci 1998
18.Ojha M (1994). Wall shear stress temporal gradient and Anastomotic intimal hyperplasia Circ. Res.
19.Pelham RJ (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. USA Vol. 94 pp. 13661-13665
20.Roche, 5-Bromo-2´-deoxy-uridine Labeling and Detection Kit I,
21.Schlichting H (1968). Boundary Layer Theory
22.SHAU YW (1999). Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound in Med. & Biol., Vol. 25, pp1377-1388
23.Soyama H (1998). A New Calibration Method for Dynamically Loaded Transducers and It’s Application to Cavitation Impact Measurement. ASME Journal of Fluids Engineering, vol. 120,pp.712-718
24.Tardy Y (1997). Shear Stress Gradients Remodel Endothelial Monolayers in Vitro via a Cell Proliferation Migration-Loss Cycle, Arteriosclerosis, Thrombosis, and Vascular Biology. 17: 3102-3106
25.Texas Instruments. Active filter design techniques Ch16.
26.Tzung K (2001). Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cell. Arterioscler Thromb Vasc Biol
27.White CR (2001). Temporal gradient in shear ,but not spatial gradient , stimulate Endothelial cell proliferation, circulation
28.White CR (2004) ,Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration, J Physiol 2004
29.Womersley JR (1955). Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol.127, pp553-563
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔