跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳維彥
研究生(外文):Wei-Yen Chen
論文名稱:以微粒電移動度掃瞄分徑器量測咳嗽飛沫粒徑分佈之研究
論文名稱(外文):The Study of Using SMPS to Measurement Size Distribution of Coughing Droplet
指導教授:李慧梅李慧梅引用關係
指導教授(外文):Whei-May Grace Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:99
中文關鍵詞:飛沫粒徑傳染病控制嚴重急性呼吸道症候群
外文關鍵詞:droplet diameterinfection controlSARS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由人體所排呼出的飛沫可能帶有能傳染疾病之微生物。由於小於次微米之粒徑在文獻中顯示占了絕大部分。此研究的目的是建立健康個體所呼出小於次微米的飛沫粒徑分佈,並且去量測性別的差異對於咳嗽風速與飛沫濃度之比較。使用採樣袋收集飛沫,再同時以微粒電移動度掃描分徑器(Scanning Mobility Particle Sizer, SMPS)系統量測咳嗽飛沫,建立小於次微米之飛沫粒徑分佈。並且將實驗資料進行統計分析,以比較不同的年齡和性別對於粒徑分佈之差異。然後利用這些資料進一步去計算飛沫之蒸發時間,沉降距離及水平距離。
以SMPS 系統實驗結果顯示飛沫粒徑範圍分佈在從0.019〜0.35 μm,而約有80% 的咳嗽飛沫粒徑是在0.03 〜0.2 μm之間,大多數飛沫其粒徑是大於0.03μm;年齡層對於飛沫之粒徑分佈並無顯著之差異,性別的部份則是第2 類族群會受到飛沫粒徑影響而有差異,其餘並沒有顯著之差異。另外在風速計的數據顯示速度分佈範圍從0.13〜1.88 m/s;在這項研究過程中發現飛沫濃度有隨著咳嗽產生之風速而增加的趨勢;而在咳嗽風速與飛沫濃度方面皆是男性大於女性的。飛沫傳輸方面,於20℃、相對濕度(RH)為50%之環境下,粒徑為0.2 μm之飛沫推估其蒸發時間只需7.07×10-5秒,而在蒸發前之沉降距離僅有4.40×10-9公分,水平傳播距離則約為8.58×10-5公分,顯示咳嗽所產生之奈米飛沫,其運動範圍只侷限於產生源附近,且很快地蒸發成飛沫核;而飛沫核在空氣中傳播,會造成疾病擴散的可能性。很多傳染性疾病屬於次微米以下之粒徑例如SARS致病菌。因此藉由此研究可以進一步了解飛沫粒徑在小於次微米之分布情形。
Droplet exhaled from human may carry microorganisms capable of transmitting disease. As a result of the size be smaller than micron scale had been proven to occupy the great part of size distribution . The goal of this study was to establish the nano scale size of droplet exhaled by healthy individuals, and to compare the sexual differences of the coughing velocity and droplet concentration. Using sample bag to collect droplet. The droplets from human subjects performing coughing were measured by scanning mobility particle sizer (SMPS) system, and establish the droplet size distribution. Furthermore, these data were treated with statistical analysis, comparing the difference of different ages and sexual classification. Then computing the evaporation time, falling distances, horizontal traveling distances with some assumptions.
The data of SMPS system showed the respiratory droplets ranged from 0.019 to 0.35 mm and 80% of droplets were between 0.03 and 0.2 mm. Most droplets were more than 0.03 mm. The droplets size were not remarkably difference in age and sexual classification, except for group 2 in sexual classification. The data of wind meter showed the velocity ranged from 0.13 to 1.88 m/s. In this study we found the droplet concentration will increase with coughing velocity. In the data of coughing velocity and droplet concentration, male’s is larger than female’s.
In the environment of 20℃ and 50% relative humidity, it took only 7.07×10-5 seconds for 0.2 mm droplet to evaporate, and the falling distance was less than 4.40×10-9 cm, the horizontal traveling distance was about 8.58×10-5 cm. It showed the range of droplets produced by coughing was near the source, and evaporating to form droplet nuclei quickly. If droplet nuclei transmit in the environment, there will be the possibility of infection of diseases. Many infectious diseases belong to nano scale size such as SARS. Therefore this study could be understood its distribution in the smaller scale of droplet size.
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
1.3 研究方法 3
第二章 文獻回顧 4
2.1.嚴重急性呼吸道症候群(SARS) 4
2.1.1 SARS緣起 4
2.1.2 SARS的病原 7
2.1.3 SARS的傳播 8
2.2飛沫粒徑與濃度之探討 9
2.2.1 飛沫粒徑 9
2.2.2飛沫核粒徑 13
2.2.3飛沫濃度 14
2.3肺活量之探討 15
2.3.1呼吸器官的構造 15
2.3.2肺活量 16
2.4飛沫之運動行為 19
2.4.1 慣性運動(inertial motion) 19
2.4.2蒸發 22
2.4.3重力沉降(gravitational settling)26
第三章 實驗設備與實驗方法 31
3.1實驗設備 31
3.1.1微粒電移動度掃描分徑器(SMPS系統)31
3.1.2 風速計TSI Model 8330 32
3.2實驗方法及設備原理 36
3.2.1實驗方法 36
3.2.2研究對象選擇 37
3.2.3統計分析 37
3.2.4 SMPS系統 38
3.2.4.1氣膠粒徑篩分儀 38
3.2.4.2凝結氣膠計數器 45
3.2.5 Q–Track 46
3.2.6風速計 47
3.3操作條件 49
第四章 結果與討論 50
4.1實驗人數與年齡層 50
4.2測試實驗 50
4.3 飛沫粒徑分佈 53
4.3.1 SMPS系統 53
4.3.2咳嗽飛沫濃度之比較 56
4.4統計分析 59
4.4.1 T-test檢定第一類族群 60
4.4.2 T-test檢定第二類族群 64
4.4.3第三類族群 68
4.4.4 F-test檢定不同年齡層之比較 72
4.5不同風速與肺活量關係 76
4.6 飛沫之傳輸 82
4.6.1 飛沫水平傳播距離 82
4.6.2 飛沫蒸發時間 84
4.6.3 沈降距離與懸浮時間 87
4.7實驗誤差 91
4.7.1 SMPS系統可能之誤差 91
4.7.2 個體之誤差 91
4.7.3 收集效率 92
4.7.4 肺活量之誤差 92
第五章 結論與建議 93
5.1結論 93
5.2建議 94
參考文獻 96
1.Badeau A, Afshari A, Goldsmith T, Frazer D. Preliminary prediction of flow and particulate concentration produced from normal human cough dispersion. Proceedings of the second joint EMBS/BMES conference. Houston, TX USA. October, 23–26, 2002, p. 246–247.
2.CHAUSSE, P. and MAGNE, H. (1916). Arch. Med. Exp. 27, 213.
3.Dwosh H.A., Hong H.H., Austgarden D., Herman S. and Schabas R. (2003). Identification and containment of an outbreak of SARS in a community hospital, CMAJ, 168, 1415-1420.
4.Duguid, J. P. (1946). The Size and the Duration of Air-carriage of Respiratory Droplets and Droplet-nuclei, Journal of Hygiene, 44, pp. 471-479.
5.Deacon J. The Microbial World-Airborne microorganisms.
http://helios.bto.ed.ac.uk/bto/microbes/microbes.htm.
Institute of Cell and Molecular Biology, and Biology
Teaching Organisation, University of Edinburgh, 2001.
6.Erdal, S., and Esmen, N. A., 1995, ‘‘Human Head Model as an Aerosol Sampler: Calculation of Aspiration Efficiencies for Coarse Particles Using an Idealized Human Head Model Facing the Wind,’’ J. Aerosol Sci., 26, pp. 253–272.
7.Fairchild, C. I., and Stamper J. F. (1987). Particle concentration in exhaled breath, Am. Ind. Hyg. Assoc. J., 48, 948-949.
8.Goldsmith, T., Afshari, A., Jones, B., Frazer, D.(2001)A system for analyzing aerosols produced by humans during respiratory maneuvers. Submitted to Ann. Biomed, Eng, S-141.
9.Hinds, W.C. (1999). Aerosol Technology—Properties, Behavior, and measurement of airborne particles, John Wiley and Son, New York.
10.Hers J. F. Ph. and K. C. Winkler (1973). Airborne transmission and airborne infection, A Halsted Press Book.
11.http://www.diamondmedicalstaffing.com/pdfs/Standard Precautions 1.pdf
12.Jennison, M.W. (1942). Aerobiology Publicat, 17, 106.
13.Joan Luckmann, R.N. , Karen Creason Sorenson, R.N. , M.N. Medical-Surgical Nursing:A Psychophysiologic Approach Philadephia:Saunders, 1974.
14.Ksiazek, T.G. et al. (2003). A novel coronavirus associated with severe acute respiratory syndrome, New Eng. J. Med. 348, 20, 1953-1966.
15.Moskal, A., and Gradon, L., 2002, ‘‘Temporary and Spatial Deposition of Aerosol Particles in the Upper Human Airways During Breathing Cycle,’’ J. Aerosol Sci., 33, pp. 1525–1539.
16.Papineni Rao S., Rosenthal Frank S. (1997). The Size Distribution of Droplets in the Exhaled Breath of Healthy Human Subjects, Journal of Aerosol Medicine- Deposition Clearance and Effects in the Lung. 10 (2), 105-116.
17.STRAUSZ, W. (1922). Z. Hyg. 96, 27.
18.Stahlhofen, W., Rudolf, G., and James, A. C., 1989, ‘‘Intercomparison of Experimental Regional Aerosol Deposition Data,’’ J. Aerosol Med., 2, pp. 285– 308.
19.Seto, W.H., Tsang, D., R Yung, W. H., Ching, T.Y., Ng, T.K., Ho, M., Ho, L.M., Peiris, J.S.M. and Advisors of Expert SARS group of Hospital Authority (2003). Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS), The Lancet. 361, 9368, 1519-1520.
20.Seeley, Stephens & Tate. Essentials Of Anatomy And Physiology,Third Edition. McGraw-Hill, 1999.
21.TSI Model 3934 (1993) Scanning Mobility Particle Sizer Instrument Manual.
22.TSI Model 3025 (1992) Ultrafine Condensation Particles Counter Instrument Manual.
23.TSI Model 3071 (1990) Differential Mobility Analyzer Instrument Manual.
24.Therapeutic Exercise:Foundations and Techniques, Third Edition Canada : Davis, 1996.
25.Varia M, Wilson S, Sarwal S, McGeer A, Gournis E, Galanis E, et al. Investigation of a nosocomial outbreak of severe acute respiratory syndrome(SARS)in Toronto, Canada. CMAJ 2003; 169:285-92.
26.Wang, B., Zhang A., Sun, J.L., Liu, H., Hu, J., Xu, L.X.(2005). Study of SARS Transmission Via Liquid Droplets in Air. Journal of Biomechanical Engineering, 127, 32-38.
27.World Health Organization (WHO), (2003a)
http://www.who.int/csr/sars/country/table2004_04_21/en/)
28.World Health Organization (WHO),(2003c)
http://www.who.int/csr/sars/survival_2003_05_04/en/
29.Wells, W.F. (1955). Airborne contagion and air hygiene, Harvard University Press, Cambridge, Massachusetts.
30.Zhao, Bin, Zhang, Zhao., Li, Xianting.(2004). Numerical study of the transport of droplets or particles generated by respiratory system indoors.
31. 台灣行政院衛生署疾病管制局.(2003)SARS防疫專刊。
32. 王秋森 陳時欣.(2002) 氣膠技術學, 新文京開發出版有限公司。
33. Mendenhall and Beaver.(1999)王慧君, 林吉仁, 黃明官, 廖怡誠共譯. 統計學, 高立圖書有限公司。
34. 陳政旻.(2004)The Study of Size Distribution of Coughing Droplet, 2004年氣膠科技研討會,台南。
35. 白曛綾, 康育豪.(2003)口鼻飛沫與病毒傳播可能性之初步探討, 2003年氣膠科技研討會,高雄。
36. 李秉穎.(2003). 別怕SARS-28各抗煞觀念, 天下遠見出版 股份有限公司。
37. 李元麒.(1978).肺臟及肺部疾病, 正中書局。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top