跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林進榮
研究生(外文):Chin-Jung lin
論文名稱:負載奈米銅顆粒之陽離子交換樹脂還原破壞水中四氯化碳之研究
論文名稱(外文):Degradation of Aqueous Carbon Tetrachloride by Nanoscale Copper Particles Supported on a Cation-Resin
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Shan-Lien Lo
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:147
中文關鍵詞:零價金屬四氯化碳還原脫氯反應奈米
外文關鍵詞:zero valent metalcarbon tetrachloridereductive dechlorination reactionnanoscale
相關次數:
  • 被引用被引用:5
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:8
零價金屬自發性釋放電子還原水中含氯有機物已引起廣泛研究與運用,過去十五年,對於反應機制、途徑與動力學已有不少的數據與討論,毒性副產物的生成與累積是目前關注的焦點。四氯化碳是常見的地下水含氯污染物,但四氯化碳無法與金屬d軌域形成π鍵吸附,導致60-80%轉化為含氯中間產物(三氯化碳與二氯化碳)累積在處理系統中,所以降低毒性產物的產率應當是選擇零價金屬的重要考量。
本研究導入離子交換樹脂為載體,負載奈米金屬顆粒(nano-M0)兼具回收水溶性金屬離子(Mn+)的功能,接續地,中高溫的氫氣轉化Mn+為nano-M0提供反應活性的再生。就還原方法而言:氣態還原的成本遠低於液相還原法(NaBH4或N2H4為還原劑)且熱處理可提高nano-M0在載體上的機械穩定度;就功能而言:以離子交換樹脂為載體可侷限Mn+成核結晶的程度,降低nano-M0的粒徑大小,同時可避免nano-M0在反應過程中發生團聚作用,此外,樹脂的陽離子交換功能可吸附反應產物- Mn+,避免出流水金屬濃度高於法規標準,同時釋出強酸離子(H+)降低反應系統pH值; 就實用性而言: 質量輕、可塑性高的高分子載體具有安裝與更新簡便的特性。
本研究目的在開發有效、方便裝卸且可再生的還原性材料,以利現地處理系統的運用,同時探討反應動力學與機制。本研究分為三個部分,第一部分為材料的製備與特性分析;第二部分為含氯有機物的破壞行為;第三部分為反應機制探討。第一部分的研究內容有載體上金屬顆粒的粒徑分佈與表面積、金屬氧化態變化以及載體對金屬離子與目標污染物的吸脫附行為;第二部分研究內容為水中四氯化碳的降解動力學反應、水質條件的干擾與活性再生方法;第三部分研究內容為金屬銅降解四氯化碳的反應機制探討。
零價銅顆粒奈米化程度對反應活性有相當大的影響,當銅顆粒平均粒徑為33 nm,一階的比表面積反應速率常數(surface-area-normalized rate coefficient, kSA)為粉末狀銅元素(0.04mm)的19倍; 銅顆粒平均粒徑為8 nm,kSA遽增為125倍。利用正戊烷萃取殘存在水樣與載體中四氯化碳的量,分辨材料吸附與破壞四氯化碳的作用,其中破壞的反應階數為0.91-0.94相當接近一階反應,反應速率常數(ka)是0.8 h-1、吸附常數是0.41 h-1、脫附常數是0.3 h-1,由活化能的大小(Ea=25.4 kJ/mol)推論水中四氯化碳消失的速率近似物理程序所控制。水中溶氧與硫化物對nano-Cu/resin降解四氯化碳反應有負影響。強酸型陽離子交換樹脂以H+交換水中反應產物Cu2+,因此反應後水溶液pH約3-4、殘餘銅離子濃度低於0.1 mg/L。銅離子的回收率會因沉澱物與錯合物的形成而減少,主要是受水中硫化物、氨氮與磷酸根影響。
貴金屬Pd、Pt、Au、Ru的添加均可大幅提升降解速率,且ka與貴金屬材料的交換電流密度(exchange current density, io)成正相關(ka=5.69log(i0)+30.15, R2=0.986),因此第二金屬表面氫原子濃度(H․)是控制雙金屬系統降解四氯化碳的主要因子。水中溶氧與硫化物分別因為競爭第二金屬表面氫原子與毒化作用導致反應速率下降,本研究的製備程序可當作再生方法且幾近100%回收反應活性。
比較不同金屬(Fe、Zn、Sn、Al、Si、Cu)降解四氯化碳的產物,發現含氯中間產物的產率與材料的i0與自由電子數比值成正相關,只有銅的系統不產生含氯中間產物且最終產物為一氧化碳,故推論降解途徑中單電子與雙電子傳遞的選擇性主要受金屬表面H․的濃度與自由電子的供給的影響,最終產物為甲烷或一氧化碳是與金屬形成氧化物與氯化物的生成熱有關。
本研究創新的材料型態擴展了使用零價金屬的選擇性,同時提供安裝與更換便捷的系統設計。創新的參數:交換電流密度與自由電子數成功地說明各類零價金屬降解四氯化碳的途徑選擇性。負載型奈米銅完全轉化四氯化碳為一氧化碳,同時兼具銅離子濃度的控制與回收,有利於一個高效率、可再生的去毒化系統的設置。
The use of zero valent metal as a reductant of organohalides has been extensively investigated over the last 15 years. The disappearance of contaminants is attributed to a corrosion-like process, in which the metal donates electron to reduce target pollutants, accompanied by the dissociation of water. Early investigations have gained insight concerning the mechanism and kinetics of the electron transfer process through batch and column experiments. The degradation of carbon tetrachloride by iron, the most commonly used reactive material, yields chlorinated intermediates at a level of 60-80% of the degraded carbon tetrachloride for lack of a stronglyπbond formed between carbon tetrachloride and d-orbit. Thus, not only reaction rate but also chlorinated intermediates yields attracts interesting.
Nanoscale zerovalent copper supported on a cation resin was successfully synthesized to enhance the removal of carbon tetrachloride (CCl4) from contaminated water. The use of the cation resin as a support prevents the reduction of surface area due to agglomeration of nanoscale zero valent copper particles. Moreover, the cation resin recycles the copper ions resulting from the reaction between CCl4 and Cu0 by simultaneous ion exchange.
The decline in the amount of CCl4 in aqueous solution results from the combined effects of degradation by nanoscale zero valent copper and sorption by the cation resin; thus the amount of CCl4 both in aqueous solution and sorbed onto the resin were measured. The orders of degradation reaction (Na) with respect to aqueous CCl4 concentration were 0.94 and 0.91 for 0.2 and 0.5g Cu0/resin loading per vial, respectively (both values were close to unity). Reducing the size of a Cu0 particle on the resin to approximately close to 10 nm would sharply increase kSA by a factor of 112-125.The pseudo-first-order rate constant normalized by the surface-area and the mass concentration of nanoscale zero valent copper (kSA) was 2.1 0.1 L h-1 m-2, approximately twenty times that of commercial powdered zero valent copper (0.04 mm). Due to the exchange between Cu2+ and the strongly acidic ions (H+ or Na+), the pH was between 3 and 4 in unbuffered solution and Cu2+ at the concentration of less than 0.1 mg L-1 was measured after the dechlorination reaction.
Bimetallic particles are extremely interesting in accelerating the dechlorination of chlorinated organics. Four noble metals (Pd, Pt, Ru and Au), separately deposited onto the copper surface through a spontaneous redox process, promoted the CCl4 dechlorination rate, and the catalytic activity of the noble metal followed the order of Pd>> Ru> Pt> Au. This order was found to be dependent on the concentrations of adsorbed atomic hydrogen, indicating that the initial reaction was cathodically controlled.
Resin as a support extends the choice of zero valent metals and provides easy emplacement and replacement. Both exchange current density and the number of free electron successful elucidate the selectivity of single-electron and two-electron transfer. Nano-metal/resin would facilitate the development of a process that could be designed for convenient emplacement and regeneration of porous reductive medium.
中文摘要 Ⅰ
英文摘要 Ⅳ
目錄 Ⅶ
表目錄 Ⅹ
圖目錄 ⅩⅡ
第一章 前言
1-1 研究背景與動機 1
1-2 研究內容與目的 4
第二章 文獻回顧
2-1含氯有機物的污染與整治技術
2-1-1污染現況 5
2-1-2整治技術 10
2-2 零價金屬還原破壞含氯有機物
2-2-1基本原理 15
2-2-2 反應動力模式 21
2-2-3 改善的技術 25
2-3 雙金屬還原破壞含氯有機物 29
2-4 金屬粒徑奈米化對破壞含氯有機物的研究
2-4-1 奈米金屬的基本概念與化學特性 32
2-4-2 零價鐵粒徑奈米化對破壞含氯有機物的影響 43
2-4-3負載型奈米金屬的開發與研究 44
第三章 研究方法與實驗設計
3-1 整體實驗架構 46
3-2 負載型奈米金屬的製備與物性分析 46
3-3 含氯有機物與反應產物的採樣與分析 51
第四章 結果與討論
4-1 負載奈米銅之陽離子交換樹脂降解水中含氯有機物56
4-1-1 製備程序 56
4-1-2 表面特性分析 64
4-1-3 粒徑奈米化對脫氯速度的影響 69
4-1-4 脫氯反應動力學 80
4-1-5 水質條件的干擾 87
4-2負載奈米雙金屬之陽離子交換樹脂降解水中含率有機物
4-2-1 製備與表面特性分析 91
4-2-2 降解速率 95
4-2-3水質條件的干擾 104
4-3反應機制的探討 107
第五章 結論與建議
6-1 結論 131
6-2 建議 132
參考文獻
附錄
陳郁文,「奈米材料在觸媒上的應用」,化工,45,21-30 (1998)。
凌永健,「工業所生產的環境荷爾蒙物質及管制」,環境荷爾蒙研討會論文集 (2000)。
程淑芬,「斗閘式現地地下水污染復育技術之探討」,國立台灣大學環工所博士論文,台北 (2000)。
Abe, T., Tachibana, Y., Uematsu, T. and Iwamoto, M., “ Preparation and Characterization of Fe2O3 Nanoparticle in Mesoporous Silicate”, Journal of Chemical Society, 1617-1621 (1995).
Agrawal, A. and Tratnyek, P. G., “Reduction of Nitro Aromatic Compounds by Zero-valent Iron Metal”, Environmental Science and Technology, 30, 153-160 (1996).
Andrievski, R. A., and Glezer, A. M., “Size Effect in Properties of Nanomaterials”, Scripta Mater, 44, 1621-1624 (2001).
Arnold, W. A. and Roberts, A. L., “Pathway of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0)”, Environmental Science and Technology, 32, 3017-3025 (1998).
Arnold, W. A. and Roberts, A. L., “Pathway and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles”, Environmental Science and Technology, 34, 1794-1805 (2000).
Balko, B. A. and Tratnyek, P. G., “Photoeffects on the Reduction of Carbon Tetrachloride by Zero-valent Iron”, Journal of Physical Chemistry B, 102, 1459-1465 (1998).
Bandara, J., Kiwi, J., Pulgarin, C, Peringer, P., Pajonk, G. M., Elaloui, A., and Albers, P., “Novel Cyclic Process Mediated by Copper Oxides Active in the Degradation of Nitrophenols: Implications for the Natural Cycle”, Environmental Science and Technology, 30, 1261-1267 (1996).
Biffis, A., Corain, B., Cvengrosova, Z., Hronec, M., Jerabek, K., and Kralik, M., “Relationships between Physico-chemical Properties and Catalytic Activity of Polymer-supported Palladium Catalysts. PartⅠ: Experimental Investigations”, Applied Catalysis A: General, 124, 355-365 (1995).
Bockris, J. O’M and Reddy, A. K. N., “Modern Electrochemistry - an Introduction to an Interdisciplinary Area” Plenum Press, New York (1970).
Boronina, T. and Klabunde, K. J., “Destruction of Organohalides in Water Using Metal Particles. Carbon Tetrachloride/Water Reactions with Magnesium, Tin, and Zin”, Environmental Science and Technology, 29, 1511-1517 (1995).
Boundart, M. and Djega-Mariadassou, G “Kinetics of Heterogeneous Catalytic Reactions”, Princeton University Press, 20-26, (1984).
Burris, D. R., Campbell, T. J., and Manoranjan, V. S., “Sorption of Trichloroethylene in a batch reactive metallic iron-water system”, Environmental Science and Technology, 29, 2850-2855 (1995).
Burris, D. R., Allen-King, R. M., Manoranjan, V. S., Campbell, T. J., Loraine, G. A., and Deng, B., “Chlorination Ethene reduction by Cast Iron: Sorption and Mass Transfer”, Journal of Environmental Engineering, 10, 1012-1019 (1998).
Cantrell, K. J., Kaplan, D. I., and Wietsma, T. W., “Zero-valent Iron for the in-situ Remediation of Selected Metals in Groundwater”, Journal of Hazardous Materials, 42, 201-212 (1995).
Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., “Reduction of Nitrate to Ammonia by zero-valent Iron”, Chemosphere, 35,2689-2695 (1997).
Cheng, S. F. and Wu, S. C., “The Enhance Methods for the Degradation of TCE by Zero-valent Metals”, Chemosphere, 41, 1263-1270 (2000).
Cohen, M. L., “Nanotubes, Nanoscience, and Nanotechnology”, Materials Science and Technology (C), 15, 1-11 (2001).
Domenico, P. A., and Schwartz, F. W., “Physical and Chemical Hydrogeology”, Wiley, New York (1990).
Doong, R. A., Chen, K. T. and Tsai, H. C., “Reductive Dechlorination of Carbon Tetrachloride and Tetrachloroethylene by Zerovalent Silicon-iron Reductants”, Environmental Science and Technology, 37, 2575-2581 (2003).
Elsner, M., Haderlein, S. B., Kellerhals, T., Luzi, S and Schwarzenbach, R. P., “Mechanisms and Products of Surface-Mediated Reductive Dehalogenation of Carbon Tetrachloride by Fe(Ⅱ) on Goethite”, Environmental Science and Technology, 38, 2058-2066 (2004).
Evans, J. W., Wainwright, M. S., Bridgewater, A. J. and Young, D. J., “On the Determination of Copper Surface Area by Reaction with Nitrous Oxide”, Applied Catalysis, 7, 75-83 (1983).
Fennelly, J. P. and Roberts, A. L., “Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants”, Environmental Science and Technology, 32, 1980-1988 (1998).
Gavaskar, A. R., Gupta, N., Sass, B. M., Janosy, R. J. and O’sullivan, D., “Permeable Barriers for Ground Water Remediation Design, Construction, and Monitoring”, Battelle Press, USA (1998).
Gillham, R. W., and O’Hannesin, S. F., “Enhanced Degradation of Halogenated Aliphatics bt Zero-valent Iron ”, Ground Water, 32, 958-967 (1994).
Ginner, J. L., Alvarez, P. J. J., Smith, S. L. and Scherer, M. M., “Nitrate and Nitrite Reduction by Fe0: Influence of Mass Transport, Temperature, and Denitrifying Microbes”, Environmental Engineering Science, 21, 219-229 (2004).
Grift, C. J. G., Wielers, A. F. H., Joghi, B. P. J., Beijnum, J., Boer, M., Versluus-Helder, M. and Gues, J. W. J., “Effect of the Reduction Treatment on the Structure and Reactivity of Silica-supported Copper Particles”, Catalysis 131, 178-189 (1991).
Grittini, C., Malcomson, M., Fernando, Q., and Korte, N., “Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of a Pd/Fe Bimetallic System”, Environmental Science and Technology, 29, 2898-2900 (1995).
Gui, L., Gillham, R. W. and Odziemkowski, M. S., “Reduction of N-nitrosodimethylamine with Granular Iron and Nickel-enhanced Iron. 1. Pathways and Kinetics”, Environmental Science and Technology, 34, 3489-3494 (2000).
Ichinose, N., Ozaki, Y. and Kashu, S., “Superfine Particle Tedchnology”, Springer, New York (1992).
Halperin B. I., Axel, F. and Tesanovic, Z., “Compatibility of Crystalline Order and the Quantized Hall Effect”, Physical Review Letter, 57, 922- (1986).
Hori, Y., Bandoh, A. and Nakatsu, A., “Electrochemical Investigation of Photocatalytic Oxidation of NO2- at TiO2(Anatase) in the Presence of O2”, Journal of Electrochemical, 25, 1155-1161 (1995).
Hronec, M., Cvengrosova, Z., Kralik, M., Palma, G. and Corain, B., “Hydrogenation of Benzene to Cyclohexene over Polymer-supported Ruthenium Catalysts”, Journal of Molecular Catalysis A: Chemical, 105, 25-30 (1996).
Hung, H. M., and Hoffmann, M. R., “Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Element Iron in the Presence of Ultrasound”, Environmental Science and Technology, 32, 3011-3016 (1998).
Johnson, T. L., Scherer, M. M. and Tratnyek, P. G., “Kinetics of Halogenated Organic Compound Degradation by Iron Metal”, Environmental Science and Technology, 30,2634-2640 (1996).
Jones, A. and McNicol, B. D., “Temperature Programmed Reduction for Solid Materials Characterization”, Marcel Dekker, Inc. (1986).
Joseph, X. R. and Mirat, D. G., “Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Environmental Science and Technology, 28, 394-400 (1994).
Kim, Y. H. and Carraway, E. R., “Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons” Environmental Science and Technology, 34, 2014-2017 (2000).
Kittel, C., “Introduction to Solid State Physics”, John Wiley and Sons, New York (1976).
Klabunde, K. J., “Nanoscale Materials in Chemistry”, John Wiley and Sons, New York (2001).
Kralik, M., Hronec, M., Jorik, V., Lora, S., Palma, G., Zecca, M., Biffis, A. and Corain, B., “Microporous Poly-(N,N-dimethyl-acrylamide)- (1-methacryloyl-ethylene-2-sulphonate)-(N,N’-methylene-bis-acrylamide) Resins as Hydrophilic Supports for Metal Catalysts”, Journal of Molecular Catalysis A: Chemical, 101, 143-152 (1995).
Kueper, B. H. and Mc Whorter, D. B., “Behavior of Dense, Nonaqueous Phase Liquids in Fractured Clay and Rock”, Ground Water, 29, 716-728 (1999).
Lasaga, A. C. and Kirkpatrck, T. J., “Kinetics of Grochemical Processes”, In P. H. Ribbe, Ed., Washington, DC (1983).
Li, T. and Farrell, J., “Reductive Dechlorination of Trichloroethene and Carbon Tetrachloride Using Iron and Palladized-Iron Cathodes”, Environmental Science and Technology, 34,173-179 (2000).
Li, T. and Farrell, J., “Electrochemical Investigation of the Rate-Limiting Mechanisms for Trichloroethylene and Carbon Tetrachloride Reduction at Iron Surfaces”, Environmental Science and Technology, 35,3550-3565 (2001).
Li, W. and Klabunde, K. J., “Ultrafine Zinc and Nickel, Palladium, Silver Coated Zinc Particles Used for Reductive Dechlorination of Chlorinated Ethylenes in Aqueous Solution”, Croatica. Chemica. Acta. 71, 853-872 (1998).
Liu, Y., Yang, F., Yue, P. L. and Chen, G., “Catalytic Dechlorination of Chlorophenols in Water by Palladium/Iron” Water Research, 35, 1887-1890 (2001).
Loraine, G. A., “Effects of Alcohols, Anions and Nonionic Surfactants on the Reduction of PCE and TCE by Zero-valent Iron”, Water Research, 35, 1453-1460 (2001).
Lowry, G. V. and Reinhard, M., “Pd-catalyzed TCE Dechlorination in Groundwater: Solute Effects, Biological Control, and Oxidative Catalyst Regeneration”, Environmental Science and Technology, 34, 3217-3223 (2000).
Lowry, G. V. and Reinhard, M., “Pd-Catalyzed TCE Dechlorination in Water: Effect of [H2](aq) and H2-Utilizing Competitive Solute on the TCE Dechlorination Rate and Product Distribution”, Environmental Science and Technology, 35, 696-702 (2001).
Maira, A. J., Yeung, K. L., Soria, J., Coronado, J. M., Belver, C., Lee, C. Y. and Augugliaro, V., “Gas-phase Photo-oxidation of Toluene Using Nanometer-size TiO2 Catalysts”, Applied Catalysis B: Environmental, 29, 327-336 (2001).
Matheson, L. J. and Tratnydk, P. G., “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science and Technology, 28, 2045-2053 (1994).
Mccormick, M. and Adriaens, P., “Carbon Tetrachloride Transformation on the Surface of Nanoscale Biogenic Magnetite Particles”, Environmental Science and Technology, 38,1045-1053 (2004).
Muftikian, R., Fernando, Q. and Korte, N., “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water”, Water Research, 29, 2434-2439 (1995).
Nam, S. and Tratnyek, P. G., “Reduction of Azo Dyes with Zero-valent Iron”, Water Research, 34, 1837-1845 (2000).
Odziemkowski, M. S., Gui, L., Gillham, R. W., “Reduction of N-nitrosodimethylamine with Granular Iron and Nickel-enhanced Mechanistic Studies”, Environmental Science and Technology, 34, 3495-3500 (2000).
Orth, W. S. and Gillham, R. W., “Dechlorination of trichloroethene in aqueous solution using Fe0”, Environmental Science and Technology, 30, 66-71 (1996).
Oostrom, M., Hofstee, C., Walker, R. C. and Dane, J. H., “Movement and Remediation of Trichloroethylene in a Saturated, Heterogeneous Porous Medium 2. Pump-and-treat and Surfactant Flushing”, Journal of Comtaminant Hydrology, 37, 179-197 (1999).
Parker, B. L., Gillham, R. W. and Cherry, J. A., “Diffusive Dissapearance of Immiscible-phase Organic Liquid in Fractured Geologic Media”, Ground Water, 32, 805-820 (1994).
Perng, T. P. and Wu, J. K., “A Brief Review Note on Mechanisms of Hydrogen Entry Into Metals”, Materials Letters, 57, 3437-3438 (2003).
Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang, L. and Lee, S. Y., “Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics”, Environmental Science and Technology, 34, 4169-4176 (2000).
Porta, F., Prati, L., Rossi, M., Coluccia, S. and Martra, G., “Metal Sols as a Useful Tool for Heterogeneous Gold Catalyst Preparation: Reinvestigation of a Liquid Phase Oxidation”, Catalysis Today, 61, 165-172 (2000).
Puls, R. W., Paul, C. J. and Powell, R. M., “The Application of In Situ Permeable Reactive (Zero-valent Iron) Barrier Technology for the Remediation of Chromate-contaminated Groundwater: a Filed Test”, Applied Geochemistry, 14, 989-1000 (1999).
Reetz, M. T., Helbig, W., Quaiser, S. A., Stimming, U., Breuer, N. and Vogel, R., “Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-Resolution TEM”, Science, 267, 367-368 (1995).
Reiche, M. A., Maciejewski, M. and Baiker, A., “Characterization by Temperature Programmed Reduction”, Catalysis Today, 56, 347-355 (2000).
Reynolds, G. W., Hoff, J. T. and Gillham, R. W., “Sampling Bias Caused by Materials Used to Monitor Halocarbons in Groundwater”, Environmental Science and Technology, 24, 135-142 (1990).
Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R. and Campbell, T. J., “Reductive Elimination of Chlorinated Ethylenes by Zero-valent Metals”, Environmental Science and Technology, 30, 2654-2658 (1996).
Sayles, G. D., You, G., Wang, M. and Kupferle, M. J.,”DDT, DDD, and DDE Dechlorination by Zero-valent Iron”, Environmental Science and Technology, 31, 3448-3454 (1997).
Siantar, D. P., Schreier, C. G., Chou, C. S. and Reinhard, M., “Treatment of 1,2-dibromo-3-chloropropane and Nitrate-contaminated Water with Zero-valent Iron or Hydrogen/Palladium Catalysts”, Water Research, 30, 2315-2322 (1996).
Schrick, B., Blough, J. L., Jones, A. D. and Mallouk, T. E., “Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-iron Nanoparticles”, Chemical Material, 14, 5140-5147 (2002).
Scherer, M. M., Westall, J. C., Ziomek-Moroz, M. and Tratnyek, P. G., “Kinetics of Carbon Tetrachloride Reduction at an Oxide-Free Iron Electrode”, Environmental Science and Technology, 31, 2385-2391 (1997).
Su, C. and Puls, R. W., “Kinetics of Trichloroethene Reduction by Zero-valent Iron and Tin: Pretreatment Effect Apparent Activation Energy and Intermediate Products”, Environmental Science and Technology, 33, 163-168 (1999).
Travis, C. C. and Doty, C. B., “Can Contaminated Aquifers at Superfund Sites Be Remediated ?”, Environmental Science and Technology, 24, 1464-1466 (1990).
U. S. EPA, “Technology Overview Report- Electrokinetics”, Ground Water Remediation Technologies Analysis Center, TO-97-03 (1997).
U.S. EPA, “In Situ Chemical Oxidation for Remediation of Contaminated Siol and Ground Water”, EPA 542-N-00-006 (2000).
U.S. EPA, “Innovative Ground Water Technologies: Development Status and Trends”, Ground-Water Remediation Technologies Analysis Center (2000).
Venkatapathy, R., Bessingpas, D. G., Canonica, S. and Perlinger, J. A., “Kinetics Models for Trichloroethylene Transformation by Zero-Valent Iron”, Applied Catalysis B: Environmental, 37, 139-159, (2002).
Wang, C. B. and Zhang, W. X., “Synthesizing Nanoscale Iron Partical for Rapid and Complete Dechlorination of TCE and PCBs”, Environmental Science and Technology, 31,2154-2156 (1997).
Wang, D., Liu, Z., Liu, F., Ai, X., Zhang, X., Cao, Y., Yu, J., Wu, T., Bai, Y., Li, T. and Tang, X.,” Fe2O3/Macroporous Resin Nanocomposites: Some Novel Highly Efficient Catalysts for Hydroxylation of Phenol with H2O2”, Applied Catalysis A: General, 25-32 (1998).
Wang, J., Blowers, P. and Farrell, J., “Understanding Reduction of carbon Tetrachloride at Nickel Surfaces”, Environmental Science and Technology, 38, 1576-1581 (2004).
Weber, E. J., “Iron-Mediated Reductive Transformation:Investigation of Reaction Mechanism”, Environmental Science and Technology, 30, 716-719 (1996).
William, D. and Callister, J. R., “Materials Science and Engineering-an Introduction”, John Wiley and Sons, USA (1992).
Yoneyama, H., “Potoreduction of Carbon Dioxide on Quantized Semiconductor Nanoparticles in Solution”, Catalysis Today, 39, 169-175 (1997).
Zhang, W. X., Wang, C. B. and Lien, H. L., “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles”, Catalysis Today, 40, 387-395 (1998)
Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O’Horo, M. P., Ganguly, B. N., Mehrotra, V., Russell, M. W. and Huffman, D. R., “Matrix-Mediated Synthesis of Nanocrystalline γ-Fe2O3: A New Optically Transparent Magnetic Material”, Nature, 257, 219-222 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top