跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方政于
研究生(外文):Cheng-yu Fang
論文名稱:多氯聯苯在二仁溪魚體及環境介質分佈之關係及生物習性影響之探討
論文名稱(外文):Distribution of polychlorinated biphenyls in fishes and environmental media of Er-Jn River and the influence of biological behavior.
指導教授:吳先琪
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:110
中文關鍵詞:多氯聯苯活性暴露途徑固相微量萃取有機質-水平衡分配係數生物濃縮係數生物習性
外文關鍵詞:polychlorinated biphenyls(PCBs)activityexposure pathwaysolid phase microextraction (SPME) methodorganic-matter-to-water partition coefficientbioconcentration coefficientbiological behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
多氯聯苯在環境中流布方向並非依照濃度之梯度,而是根據活性之梯度,唯有正確取得各介質之活性,才能決定多氯聯苯在環境各介質中之暴露途徑。以往研究者多以總量之數據,經由Mackay及Paterson(1981)所提出逸壓平衡模式之概念,進而推求各介質中多氯聯苯逸壓(活性),然推估之逸壓是否為正確,需要進一步求證。故本研究利用SPME之技術,實際測量二仁溪中底泥、水體及魚體之多氯聯苯活性。
研究結果顯示多氯聯苯在二仁溪各介質之傳輸途徑,以底泥中有機質為二仁溪多氯聯苯釋放之來源,底泥釋放至水體,而魚體經由攝食及鰓之平衡,將活性低於本身之食物中多氯聯苯累積於魚體內。各魚種之平均總活性顯然並未完全隨營養階層增加而增加,以底泥中有機質為食物來源之魚種大鱗鮻最大,多氯聯苯活性達0.16(mg/L, PDMS),而以小魚小蝦為食物來源之魚種大眼海鰱最低,多氯聯苯活性為0.01(mg/L, PDMS),僅有大鱗鮻之6%。顯然食物來源為造成活性相異主因。若將魚種依食性分為底棲掠食及上層掠食之魚種,則上層掠食之魚種其體內之活性隨營養階層增加而增加。而底棲掠食之魚種顯然與營養階層無關,推測可能因其停留於河口覓食之時間不同,停留時間越短多氯聯苯累積量也越少。
多氯聯苯有機質對水之平衡分配係數與辛醇對水之平衡分配係數之對數關係,及脂質對水之平衡分配係數與辛醇對水之平衡分配係數之對數關係,皆呈線性之關係。本研究所獲得之平衡係數顯然高於其他研究者之結果,可能係其他研究者以萃取方式分析現地水樣,誤將附著於膠體物質上之多氯聯苯也視為溶解相,而高估了水中多氯聯苯含量。因此低估有機質對水之平衡分配係數與脂質對水之平衡分配係數。
以底泥活性為推估大鱗鮻之多氯聯苯總量時,其多聯苯含量較實測之魚體多氯聯苯含量為低,而低估風險值。以魚體之活性及以底泥之總量由底泥至水分配係數推估之魚體總量相同,故風險值相同。但三者之值皆高於容許致癌風險10-6,可能影響當地居民健康,應考慮底泥之清除。
The migration of polychlorinated biphenyls(PCBs)is not driven by the gradient of concentration, but by that of activity. Only by gaining each activity in the environmental phase can we identify the principal exposure pathways. Current researchers estimate PCBs’ fugacity by making use of the conception of the empirical partition coefficient. However, the estimates remain doubtful. The thesis aims to accurately measure the PCBs’ activity in sediment and fish in Er-Jen River with solid phase microextraction (SPME)method.
The research result reveals that the source of PCBs in Er-Jen River is the contaminated sediment. They were released to the water body. Through the equilibration between gills and water body, and food from lower trophic level than themselves, fish accumulate PCBs. The total activity of each fish species does not necessarily increase with the increase of trophic level. Liza macrolepis which feeds on organic matters has the highest level, which amounts to 0.16 mg/L-PDMS, and megalops cyprinids which feeds on shrimps and small fishes have the lowest activity, which is 0.01 mg/L-PDMS. Obviously, the source of food accounts for the difference in activity. According to the feeding type, we can divide fish species into benthic feeders and pelagic feeders. The activity in pelagic feeders increases with the increase of trophic level. However, activity in benthic feeders has nothing to do with the trophic level. The result indicates that the difference was resulted from the duration of staying in the estuarine regions.
Both logBCFL and logKom increase linearly with logKow. However, they are higher than those reported in the literatures. These discrepancies might be resulted form overestimating the concentration in nature water and mistaking PCBs adsorbed in colloidal matters as in aqueous phase. Previous researchers might have underestimated logBCFL and logKom.
Due to the non-equilibrium among activities of fishes, sediment and water, we might underestimate the human risk adopting the activity in sediment. Cancer risk estimated by activity in fish equals that by sediment content. The cancer risks mentioned above are higher than the acceptable risk, 10-6. Fish, finally uptaken by human, may be hazard to local residents. Remediation of contaminated sediment in Er-Jen River should be considered.
中文摘要
英文摘要
目錄............................................................................................................I
表目錄…………………………………………………………………..IV
圖目錄…………………………………………………………………...V
第一章 緒論…………..…………………………………………………1
1.1 研究緣起……………………………………………………….1
1.2 研究內容……………………………………………………….1
1.3 研究目的……………………………………………………….2
第二章 文獻回顧………………………………………………………..3
2.1 研究背景……………………………………………………….3
2.1.1 二仁溪流域簡介…………………………………………3
2.1.2 多氯聯苯於二仁溪之污染起源及現況…………………4
2.2 多氯聯苯簡介………………………………………………….4
2.2.1 種類及用途……………………………………………....5
2.2.2 物理、化學及生物特性…………………………………6
2.2.3 毒性………………………………………………………8
2.2.4 環境中宿命……………………………………………..11
2.2.5 多氯聯苯之人體暴露途徑及暴露劑量………………..11
2.2.6 環境賀爾蒙……………………………………………..12
2.3 逸壓理論……………………………………………………...15
2.4 中間介質之應用……………………………………………...16
2.4.1 中間介質之發展………………………………………..16
2.4.2 利用中間介質量測活性之原理………………………..17
2.4.3 中間介質之吸收動力模式……………………………..18
2.4.4 中間介質材料-PDMS之特性………………………..19
2.5 國內相關研究 …………………………………………..…...20
2.6 生物習性及生理特性與體內多氯聯苯分佈之關聯性……...22
2.7 魚體多氯聯苯累積之機制…………………………………...24
第三章 研究方法………………………………………………………27
3.1 研究架構……………………………………………………...27
3.2 樣品收集……………………………………………………...28
3.2.1 表層底泥之採樣………………………………………..28
3.2.2 上層水之採樣…………………………………………..28
3.2.3 魚體……………………………………………………..29
3.3 多氯聯苯活性測定…………………………………………...29
3.3.1 中間介質材料基本資料………………………………..29
3.3.2 光纖於各環境介質中吸收多氯聯苯試驗……………..30
3.3.2.1 水中多氯聯苯活性測試………………………...30
3.3.2.2 底泥中多氯聯苯活性測試……………………...30
3.3.2.3 魚體中多氯聯苯活性測試……………………...31
3.3.3 光纖吸附量不影響各環境介質中多氯聯苯之確認…..31
3.4 總量分析方法………………………………………………...35
3.5 多氯聯苯分析方法…………………………………………...35
3.5.1 標準品配製……………………………………..………35
3.5.2 多氯聯苯分析方法中儀器之條件……………………..36
3.5.3 定性及定量分析………………………………………..37
3.6 其他相關檢測方法檢測……………………………………...39
3.7 魚種及年齡鑑定……………………………………………...39
3.8 人體健康風險評估……………………..…………………….40
第四章 結果與討論…………………………………………………..41
4.1 各環境介質中多氯聯苯之活性……………………………...41
4.1.1 底泥樣中多氯聯苯……………………………………41
4.1.2 水樣中多氯聯苯活性…………………………………49
4.1.3 魚體中多氯聯苯………………………………………57
4.1.3.1 魚樣本分佈及魚種特性……………………….57
4.1.3.2 魚體中多氯聯苯總量分佈…………………….58
4.1.3.3 魚體中多氯聯苯活性分佈與食性及棲所生態之關聯……………………………………………71
4.1.3.4 指紋特性與食性及棲所生態之關聯………….74
4.1.3.5 多氯聯苯活性大小與部位之關聯…………….77
4.1.3.6 同地點不同年份所捕獲大鱗鮻中多氯聯苯活性比較……………………………………………79
4.2 多氯聯苯在河口生態系統中暴露途徑分析………………...80
4.3 有機質及脂質對水之平衡分配係數………………………...86
4.3.1 有機質對水之平衡係數………………………………86
4.3.2 脂質對水之平衡係數…………………………………88
4.4 人體健康風險………………………………………………...90
第五章 結論與建議………………………………………………….93
5.1 結論…………………………………………………………...93
5.2 建議…………………………………………………………...95
參考文獻……………………………………………………………..97
附錄 實驗數據…………………………………………..................103
表目錄
表2.1 多氯聯苯之產品及其用途……………………………………….5
表2.2 多氯聯苯物理、化學及生物特性……………………………….7
表2.3 多氯聯苯基本資料………………………………………………8
表2.4 Dioxin-like多氯聯苯TEF值……………………………………10
表2.5 我國對12種持久性有機物之管制現況……………………….14
表2.6 二仁溪下游採樣站魚體累積多氯聯苯含量…………………...22
表3.1 各採樣點溫度、溶氧及衛星定位即時監測結果……………...28
表3.2 中間介質材料基本資料………………….……………………..30
表3.3 各介質中多氯聯苯容量檢驗各項參數說明…………………...32
表3.3 光纖與各介質之多氯聯苯含量比較…………………………...34
表3.4 氣相層析儀設定………………………………………………...36
表3.5 質譜儀設定……………………………………………………...37
表3.6 選擇離子監測設定……………………………………………...37
表4.1 底泥樣品之多氯聯苯總活性、總有機質及含水率……………41
表4.2 水樣品之多氯聯苯總活性、總有機質及含水率………………50
表4.3 各魚樣之型態特徵、多氯聯苯總活性及總量…………………59
表4.4 各魚種之棲所生態描述及食物來源…………………………...69
表4.5 魚體之多氯聯苯濃度及致癌風險值…………………………...91






圖目錄
圖2.1 二仁溪水系圖……………………………………………………3
圖2.2 多氯聯苯結構示意圖……………………………………………6
圖2.3 PDMS吸收動力模式之吸收比、無因次時間及容量比之關係.19
圖2.4 聚二甲基矽氧烷化學結構……………………………………...20
圖2.5 多氯聯苯累積於魚體之機制示意圖…………………………...25
圖3.1 研究架構流程圖………………………………………………...27
圖3.2 採樣位置示意圖………………………………………………...29
圖3.3 Aromix標準品之圖譜及波峰確認……………………………...38
圖4.1 底泥樣品S4之多氯聯苯活性分析圖譜……………………….44
圖4.2 本研究與2003年各採樣點表層底泥之總活性……………….45
圖4.3 各底泥樣品之多氯聯苯活性分佈……………………………...46
圖4.4 各底泥樣品之多氯聯苯活性正規化分佈……………………...47
圖4.5 2003年與2004年底泥多氯聯苯總量………………………….48
圖4.6 底泥樣品之多氯聯苯活性與總量比較………………………...49
圖4.7 水樣品W4之多氯聯苯活性分析圖譜…………………………52
圖4.8 水樣中多氯聯苯總活性………………………………………...53
圖4.9 各水樣品之多氯聯苯活性分佈……………………………… ..54
圖4.10 各水樣品之多氯聯苯活性正規化分佈……………………….55
圖4.11 本研究與2003年各採樣點表層水樣之多氯聯苯總活性分佈
…………………………………………………………………56
圖4.12 虱目魚之多氯聯苯活性分佈圖……………………………….60
圖4.13 鯔之多氯聯苯活性分佈圖…………………………………….60
圖4.14 環球海鰶之多氯聯苯活性分佈圖…………………………….61
圖4.15 大鱗鮻之多氯聯苯活性分佈圖….……………………………62
圖4.16 大眼海鰱之多氯聯苯活性分佈圖…………………………….63
圖4.17 海鰱之多氯聯苯活性分佈圖………………………………….64
圖4.18 斑海鯰之多氯聯苯分佈圖…………………………………….65
圖4.19 布氏金梭魚之多氯聯苯分活性佈圖………………………….66
圖4.20 大甲鰺之多氯聯苯活性分佈圖……………………………….67
圖4.21 白帶魚之多氯聯苯活性分佈圖……………………………….67
圖4.22 魚樣品F2-1-8之多氯聯苯活性分析圖譜……………………68
圖4.23 各魚種之多氯聯苯總活性…………………………………….74
圖4.24 各氯數不同之多氯聯苯比例與營養階層之關聯…………….75
圖4.25 各魚種所含不同氯數多氯聯苯之指紋特性………………….76
圖4.26 虱目魚魚肚與魚背之多氯聯苯活性差異…………………….78
圖4.27 大鱗鮻魚肚及魚背之多氯聯苯活性差異…………………….78
圖4.28 大眼海鰱魚肚與魚背之多氯聯苯活性差異………………….79
圖4.29 大鱗鮻之多氯聯苯活性與2003年比較………………………80
圖4.30 PCB52活性分佈示意圖……………………………………….82
圖4.31 PCB101活性分佈示意圖………………………………………83
圖4.32 PCB153 活性分佈示意圖……………………………………..84
圖4.33 PCB180 活性分佈示意圖……………………………………..85
圖4.34 本研究與其他研究者之logKom與logKow相關性比較………87
圖4.35 本研究與其他研究者之logBCFL與logKow相關性比較……89
Alock, R. E.; Behnisch, P. A.; Jones, K. C.; Hagenmaier, H., 1998. Doxin-like PCBs in the enviromantal-human exposure and significance of sources. Chemosphere. 37, 1457-1472.

Ashley, J. T. F.; Secor, D. H.; Zlokovitz, E.; Wales, S. Q.; Baker, J. E., 2000. Linking habitat use of Hudson River striped bass to accumulation of PCBs. Environ. Sci. Technol. 34, 1023-1029.

Ashley, J. T. F.; Horwitz, R.; Steinbacher, J. C., 2003. A comparison of congeneric PCB patterns in American eels and striped bass from the Hudson and Delaware River estuaries. Mar. Pollut. Bull. 46, 1294-1308.

Baker, J. E.; Eisenreich, S. J.; Johnson, T. C.; Halfman, B .M.,1985. Chlorinated hydrocarbon cycling in the benthic nepheloid layer of Lake Superior. Environ. Sci. Technol. 19, 854-861.

Bernhoft, A.; Skaare, J. U., 1994. Levels of selected individual polychlorinated biphenyls in different tissues of harbour seals (Phoca vitulina) from the southern coast of Norway. Environ. Pollut. 86, 99-107.

Binelli, A.; Provini, A., 2003. The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere. 53, 143-151.

Bremle, G..; Larsson, P., 1998. PCB concentration in fish in a river system after remediation of contaminated sediment. Environ. Sci. Technol. 32, 3491-3495.
Bruggeman, W.A.; Opperhuizen, A.; Wijbenga, A.; Hutzinger, O., 1984. Bioaccumulation of super-lipopilic chemicals in fish. Environ. Toxicol. Chem. 7, 173-189.

Campfens, J.; Mackay, D., 1997. Fugacity-based model of PCB bioaccumulation in complex aquqtic food webs. Environ. Sci. Technol. 31, 577-583.

Clark, K. E., 1990. Model of organic chemical uptake and clearance by fish from food and water. Environ. Sci. Technol. 24, 1203-1213.

Cochran, J.W.; Frame, G.M., 1999. Recent development in the high-resolution gas chromatography of polychlorinated biphenyls. J. Chromatogr., A. 843, 323-368.

Fisk, A. T.; Norstorm, R. J.; Cymalisty, C. D.; Muir, D.C. G., 1998. Dietary accumulation and their relation ship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 17, 951-961.

Gobas, F. A. P. C., 1993. Gastrointinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ. Sci. Technol. 27, 2855-2863.

Jager, T.; Fleuren, R. H. L.; Hogendoorn, E. A.; de Korte, G., 2003. Elucidating the route of exposure for organic chemicals in the earthworm, Eisenia andrei. Environ. Sci. Technol. 37, 3399-3404.

Jessen, .B. M.; Skaare, J. U.; Ekker, M.; Vongraven, D.; Lorentsen, S.-H., 1996. Organochlorine compounds in blubber, liver and brain in neonatal grey seal pups. Chemosphere. 32, 2115-2125.

Kates, M., 1986. Technique of lipidology: Isolation, analysis and identification of lipids. In Burdon RH, van Knippenberg PH, eds, Laboratory Techniques in Biochemistry and Molecular Biology, Part 2, Vol 3. Elsevier, New York, NY, USA, pp 1-464.

Ko, F. C.; Baker J. E., 2004. Seasonal and annual loads of hydrophobic organic contaminants from the Susquehanna River basin to the Chesapeake. Mar. Pollut. Bull. 48, 840-851.

Livingston, D.R., 1992. Persistent pollutants in marine invertebrates. In: Walker, C.H., Livingston,D.R. (EDs.), Persistent Pollutants in Marine Ecosystem. Permagon Press, Oxford, UK.

Louch, D.; Motlagh, S.; Pawliszyn, J., 1992. Dynamic of organic compound extraction from water using liquid-coated fused silica fibers. Anal. Chem. 64, 1187-1199.

Mackay, D.; Paterson, S., 1981. Caculating Fugacity. Environ. Sci. Tenchnol. 15, 1006-1014.

Mackay, D.; Wang, Y. S.; Kuo, C. M., 1992. Illustrate hand book of physical-chemistry properties and environmental fate for organic chemicals. Volume I, Lewis publishers, Inc.

Maruya, K.A., 1998. Aroclor 1268 and toxaphene in fish from a Southeastem U.S. Estuary. Environ. Sci. Technol. 32, 1069-1075.

Mayer, P.; Tolls, J.; Hermens, J. L. M.;Mackay, D., 2003. Equilibrium sampling device. Environ. Sci. Technol. 37, 185-191.

Perugini, M. et al., 2004. Levels of polychlorinated biphenyls organochlorine pesticides in some edible marine organisms from the Central Adriatic Sea. Chemosphere. 57, 391-400.

Picer, X.; Picer, M., 1990. Long-term trends of DDT and PCB concentration in mussels. Chemosphere. 21, 153-158.

Ritter, L.; Solomon, K. R.; Forget, J.; Stemeroff, M.; O’Leary, C., 2001. Persistent organic pollutants-an assessment report on: DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxin, and furans. Inter-organization programme for the sound management of chemicals(IOMC).

Russell, R. W.; Gobas, F. A. P. C.; Haffner, G.D., 1999. Role of chemical and ecological factors in trophic transfer of organic chemicals in aquatic food webs. Environ. Toxicol. Chem. 18, 1250-1257.

Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M., 2003. Enviromental organic chemistry. 2nd ed., John Wiley & Sons, Inc.

United State Environmental Protection Agency, 2000b. Integrated Risk Information System Database (IRIS), http://www.epa.gov/iris.

Voice, T.C., Weber Jr., W.J., 1983. Sorption of hydrophobic compound by sediment, soil and suspended soils. I. Theory and background. Watre Res. 17, 1433-1441.

Weber, K.; Goerke, H., 2003. Persistent organic pollutant (POPs) in Antarctic fish: levels, patterns, changes. Chemosphere. 53, 667-678.

胡安仁,1991,二仁溪流域河床淤泥及兩岸土壤中多氯聯苯含量分析,國立成功大學化學研究所碩士論文。

莊豊霖,1997,微波消化萃取魚肉中多氯聯苯之研究,私立淡江大學碩士論文。

殷名稱,1998,魚類生態學,水產出版社。

王正雄,黃榮輝、洪文宗,2000,台灣河川魚體多氯聯苯之濃度調查研究,行政院環保署環境檢驗所。

李亦書,2000,台灣西南沿海水環境中多氯聯苯之研究,國立中山大學碩士論文。

林天送,楊明珠,2001,環境荷爾蒙危機,元氣齋出版社有限公司。

王升民,2001,多氯聯苯在環境中之流佈-以灣裡地區為例,國立台灣大學碩士論文。

王漢泉,2001,台灣河川水質魚類指標之研究,行政院環保署環境檢驗所。

謝明凱,2004,多氯聯苯於二仁溪之暴露途徑及利用固相微量萃取技術測定環境介質中之活性,國立台灣大學碩士論文。

Froese, R. and Pauly, D., 2005. FishBase.

中央研究院,2005,台灣魚類資料庫。

吳先琪,曾四恭,林佑彥,董瑞安,1992,台灣地區多氯聯苯污染現況調查及危害評估,行政院環境保護署。

吳先琪,張美玲,傅崇德,陳怡靜,方政于,簡鈺晴,2005,持久性有機污染物在河口生態系統之暴露途徑受生地化作用影響之研究,國科會結案報告。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top