(3.235.41.241) 您好!臺灣時間:2021/04/11 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王耀晟
研究生(外文):Yao-Cheng Wang
論文名稱:天然有機物親疏水性對外加電場薄膜程序之積垢影響研究
論文名稱(外文):Influence of hydrophobicity of Natural organic matter on the fouling of Electrically enhanced membrane filtration
指導教授:李公哲李公哲引用關係
指導教授(外文):Kung-Chun Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:121
中文關鍵詞:天然有機物親疏水性外加電場薄膜程序膜孔大小
外文關鍵詞:Natural organic matterNOMHydrophobicityElectric enhanced membrane processpore sizes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究將腐植質以DAX-8樹脂分離成親水性與疏水性水樣,進行UF薄膜外加電場掃流過濾程序,並且於3種不同膜孔大小之薄膜及施加4種電場強度下進行實驗操作,於未施加電場的情況下,親水性水樣的通量衰減大於疏水性水樣,薄膜膜孔大者通量衰退程度大於膜孔小者,腐植質去除率方面是膜孔小者去除率高,親水性水樣則因較易積垢反而使去除率高於疏水性水樣,以阻力串聯分析積垢情形,發現親水性水樣主要造成不可逆積垢,而疏水性水樣則是可逆與不可逆積垢較為平均,故在清洗操作上,疏水性水樣與親水性水樣相較,更具工程應用優勢。
於施加電場的情況下過濾腐植質,過濾通量隨電場強度增加而增高,薄膜積垢阻力藉由施加電場所引起電泳動作用有效減少,分析積垢形式發現電場作用使親疏水性水樣之總積垢阻力均可減少,去除率方面隨電場增高而提升,顯見電泳作用使膜面腐植質濃度降低,因此能提高薄膜對NOM的去除,但即使於高電場強度作用下,去除率仍與薄膜膜孔大小高度相關,顯示於外加電場程序下,膜孔大小仍是影響去除率高低的重要因素,但施加電場能輔助提高去除率;不同親疏水性水樣於外加電場程序的表現不論是減緩積垢進而增加過濾通量或是提升去除效率的表現,都是疏水性水樣比較優異,與粒子電泳動試驗比較,發現疏水性水樣粒子電泳動能力較高,推論粒子電泳動能力與薄膜外加電場程序之成效具正相關性,結論是此薄膜外加電場程序適合處理電泳動能力較高的疏水性水樣,可以明顯提高過濾通量及去除效率,且就總淨出水量加以評估,疏水性水樣則較親水性之水樣可有效增加,故對原水中之腐植質成分含疏水性NOM比例較多之情況下,更顯外加電場之UF薄膜過濾應用潛力。
關鍵字:天然有機物、親疏水性、外加電場薄膜程序、膜孔大小
Abstract

In this study, NOM fractionation by DAX-8 resin has been used to obtain hydrophobic and hydrophilic NOM solution. The effect of hydrophobicity on electric enhanced membrane process under three pore sizes of membrane and different electric field strength were investigated. When electric field was not applied, hydrophilic NOM solution caused more flux decline than hydrophobic one. The flux decline was getting worse with increasing pore size, while the NOM rejection was getting better with decreasing pore size. Besides, hydrophilic NOM solution resulted in significant NOM rejection due to the greater fouling as compared to the hydrophobic sample. Through the calculation of series resistance for membrane, it was observed that the hydrophilic components largely contributed to irreversible resistance but the reversible/irreversible resistance caused by the hydrophobic components was quite similar. Membrane cleaning operations such as backwash, chemical cleaning were more economical for hydrophobic NOM solution. Accordingly, hydrophobic NOM solution is more applicable to water treatment than hydrophilic one.
When an electric field was applied, flux increased with the strength of the electric field. Direct current electric field could be used to reduce the fouling resistance by the electrophoresis effect. By analyzing the fouling resistances, the total fouling resistances of hydrophobic and hydrophilic NOM solutions were both reduced with the electric field. Under the electric field, NOM rejection was increased because electrophoresis decreased the NOM concentration on the membrane surface. Additionally, NOM rejection depended on the pore size of membrane, even if a high electric field was applied, so the pore sizes of membrane appeared to be another important factor affecting the rejection ratio. With regard to the flux increase, the fouling reduction, and the rejection ratio enhancement under the electric field, the proposed method is more suitable for hydrophobic NOM solution. Moreover, compared with the experiment of electrophoresis, the electrophoretic mobility of hydrophobic components is higher than that of hydrophilic ones, and a positive correlation between the electrophoretic mobility and the performance of electrically enhanced membrane filtration was recognized. Our experimental results showed that the electrically enhanced membrane filtration can handle hydrophobic components where electrophoretic velocity is faster. Under these conditions, the electric field enhanced filtration process improves the removal efficiency and the filtration flux obviously. Hydrophobic water could also increase the total volume of permeate than hydrophilic water. Consequently, the electric field enhanced filtration has great potential for rejection of NOM containing more hydrophobic components.
Key words: Natural organic matter; NOM; Hydrophobicity; Electric enhanced membrane process; pore sizes
目 錄
頁 次
第一章 前言..................................... 1
1.1 研究動機與目的.................................... 1
1.2 研究項目.......................................... 3
第二章 文獻回顧................................. 4
2.1 水中天然有機物.................................... 4
2.1.1 天然有機物的來源與組成....................... 4
2.1.2 水中天然有機物的性質與影響................... 5
2.2 DAX-8樹脂...........................................8
2.2.1 DAX-8樹指分離原理.............................8
2.2.2 DAX-8樹指分離應用.............................9
2.3 GFC分子量分離......................................11
2.3.1 分子量分離原理...............................11
2.3.2 GFC分離水中天然有機物........................12
2.4 薄膜處理程序...................................... 14
2.4.1 薄膜孔徑大小、材質與操作.....................14
2.4.2 薄膜在淨水工程之應用........................ 16
2.4.3 影響薄膜操作之因子.......................... 17
2.4.4 薄膜機構之阻力分析.......................... 22
2.4.5 減緩薄膜機構之方法.......................... 25
2.5 外加電場薄膜過濾程序.............................. 26
2.5.1外加電場薄膜過濾原理與應用...................26
2.5.2臨界電場理論.................................28
2.5.3操作變因之影響...............................29
2.5.4外加電場對去除率的影響.......................31
第三章 實驗設備與方法.......................... 33
3.1 實驗設計與流程.....................................33
3.2 實驗步驟與方法.....................................35
3.2.1 腐植質溶液之配製............................ 35
3.2.2 DAX-8分離設備與分離方法.....................35
3.2.3 親疏水性水樣導電度去除...................... 38
3.2.4 GFC分子量分離設備與方法.....................39
3.2.5 薄膜外加電場模組及實驗程序.................. 42
3.2.6 阻力串連模式分析............................ 45
3.3 水質分析設備及分析方法.............................46
3.3.1 總有機碳分析方法及設備...................... 46
3.3.2 紫外光與可見光光譜儀........................ 47
3.3.3 粒子界達電位量測............................ 47
3.3.4 薄膜材質帶電性分析.......................... 48
第四章 結果與討論.............................. 49
4.1 腐植質分離與特性...................................49
4.1.1 DAX-8分離腐植質.............................49
4.1.2 腐植質分子量分佈............................ 50
4.1.3 親疏水性水樣導電度降低程序.................. 52
4.1.4 腐植質電泳動特性............................ 55
4.2 薄膜過濾通量與相關操作因子關連性探討...............57
4.2.1 進流水親疏水特性對UF薄膜過濾之影響..........57
4.2.2 UF薄膜孔徑對過濾之影響......................61
4.2.3 外加電場對UF薄膜過濾之影響..................64
4.3 薄膜去除效率與相關操作因子關連性探討...............78
4.3.1 進流水親疏水特性對UF薄膜去除率之影響........78
4.3.2 薄膜孔徑對UF薄膜去除率之影響................81
4.3.3 外加電場對UF薄膜去除率之影響................82
4.3.4 外加電場對去除消毒副產物前驅物質之影響...... 89
4.4 薄膜積垢阻力分析...................................92
4.4.1 不同親疏水性水樣之阻力分析.................. 94
4.4.2 不同薄膜孔徑之阻力分析...................... 97
4.4.3 薄膜外加電場程序之阻力分析.................. 98
第五章 結論與建議............................. 101
5.1 結論..............................................101
5.2 建議..............................................104
第六章 參考文獻............................... 105
附錄............................................ 113

圖 目 錄
頁 次
圖2.1.1 DOMs之組成........................................5
圖2.2.1 膠體體積表示圖...................................12
圖2.4.1 薄膜分離示意圖...................................14
圖2.4.2 各種薄膜的選擇性.................................15
圖2.4.3 過濾方向示意圖...................................21
圖2.4.4 薄膜積垢形式.....................................24
圖2.5.1 薄膜外加電場設備圖...............................27
圖3.1.1 實驗設計流程圖...................................34
圖3.2.1 DAX-8樹脂分離設備圖..............................36
圖3.2.2 分子量分離設備圖............................... 40
圖3.2.3 外加電場薄膜程序設備圖..........................44
圖4.1.1 分子量標準品層析圖...............................51
圖4.1.2 分子量校正曲線...................................52
圖4.1.3 腐植質分子量分離.................................52
圖4.1.4 疏水性水樣分子量分佈.............................54
圖4.1.5 親水性水樣分子量分佈.............................55
圖4.1.6 各水樣在不同pH下之電泳動情形.....................56
圖4.1.7 各水樣在不同pH值下界達電位值.....................56
圖4.2.1 以純水過濾之通量.................................58
圖4.2.2 各水樣對50KDa薄膜通量之影響......................59
圖4.2.3 各水樣對100KDa薄膜通量之影響.....................60
圖4.2.4 各水樣對300KDa薄膜通量之影響.....................60
圖4.2.5 腐植質原樣在不同薄膜膜孔下之通量衰減情形.........62
圖4.2.6 以體積表示腐植質原樣在不同薄膜膜孔下之通量衰減情形62
圖4.2.7 疏水性水樣在不同薄膜膜孔下之通量衰減情形.........63
圖4.2.8 親水性水樣在不同薄膜膜孔下之通量衰減情形.........64
圖4.2.9 外加電場對腐植質原樣通量之影響(50KDa薄膜)........67
圖4.2.10 外加電場對腐植質原樣通量之影響(100KDa薄膜)......67
圖4.2.11 外加電場對腐植質原樣通量之影響(300KDa薄膜)......68
圖4.2.12 外加電場對疏水性水樣通量之影響(50KDa薄膜).......69
圖4.2.13 外加電場對疏水性水樣通量之影響(100KDa薄膜)......69
圖4.2.14 外加電場對疏水性水樣通量之影響(300KDa薄膜)......70
圖4.2.15 外加電場對親水性水樣通量之影響(50KDa薄膜).......71
圖4.2.16 外加電場對親水性水樣通量之影響(300KDa薄膜)......71
圖4.2.17 外加25V電壓對各水樣通量之影響(50KDa薄膜)....... 72
圖4.2.18 外加55V電壓對各水樣通量之影響(50KDa薄膜)....... 73
圖4.2.19 外加125V電壓對各水樣通量之影響(50KDa薄膜)...... 73
圖4.2.20 外加25V電壓對各水樣通量之影響(100KDa薄膜)...... 74
圖4.2.21 外加55V電壓對各水樣通量之影響(100KDa薄膜)..... .74
圖4.2.22 外加25V電壓對各水樣通量之影響(300KDa薄膜).... ..75
圖4.2.23 外加55V電壓對各水樣通量之影響(300KDa薄膜)...... 75
圖4.2.24 過濾5小時總濾液體積(50KDa薄膜)................. 77
圖4.2.25 過濾5小時總濾液體積(300KDa薄膜)............... .77
圖4.3.1 進流水親疏水特性對去除率的影響(50KDa薄膜)........80
圖4.3.2 進流水親疏水特性對去除率的影響(100KDa薄膜).......80
圖4.3.3 進流水親疏水特性對去除率的影響(300KDa薄膜).......81
圖4.3.4 各水樣在不同薄膜膜孔下之平均去除率...............82
圖4.3.5 外加電場的影響(50KDa薄膜)........................84
圖4.3.6 外加電場的影響(100KDa薄膜)...................... 84
圖4.3.7 外加電場的影響(300KDa薄膜).......................85
圖4.3.8 55V電壓下各水樣在不同薄膜膜孔下之去除率..........85
圖4.3.9 125V下各水樣在不同MWCO薄膜下之去除率............ 86
圖4.3.10 外加電場下各水樣淨出水量提升效率(50KDa薄膜).....88
圖4.3.11 外加電場下各水樣淨出水量提升效率(300KDa薄膜)....89
圖4.3.12 外加電場下各水樣之SUVA分析(50KDa薄膜)...........90
圖4.3.13 外加電場下各水樣之SUVA分析(100KDa薄膜)..........90
圖4.3.14 外加電場下各水樣之SUVA分析(300KDa薄膜)..........91
圖4.4.1 各水樣之阻力分析(50KDa薄膜)......................96
圖4.4.2 各水樣之阻力分析(100KDa薄膜).....................96
圖4.4.3 不同電場下腐植質原樣之阻力分析(50KDa薄膜)........99
圖4.4.4 不同電場下腐植質原樣之阻力分析(100KDa薄膜)...... 99

表 目 錄
頁 次
表 2.2.1 DAX-8特性......................................9
表2.4.1 水樣特性對薄膜積垢的影響.........................17
表3.2.1 薄膜基本特性......................................43
表4.1.1 腐植質分離性質....................................50
表4.1.2 去除導電度前後之水樣性質.........................54
表4.2.1 有效電場.........................................65
表4.2.2 臨界電場.........................................65
表4.3.1 薄膜外加電場程序於不同操作條件下之去除效率(%)....86
表4.4.1 不同水樣及膜孔操作下之阻力........................97
表4.4.2 不同電場作用下之阻力分析........................100
Adamson, A. W. and A. P. Gast (1997). "Physical Chemistry of surfaces." Wiley-Interscience, New York.

Aiken, G. R., D. M. McKnight, et al. (1992). "Isolation Of Hydrophilic Organic-Acids From Water Using Nonionic Macroporous Resins." Organic Geochemistry 18(4): 567-573.

Amy, G. L., R. A. Sierka, et al. (1992). "Molecular-Size Distributions Of Dissolved Organic-Matter." Journal American Water Works Association 84(6): 67-75.

Aoustin, E., A. I. Schafer, et al. (2001). "Ultrafiltration of natural organic matter." Separation And Purification Technology 22-3(1-3): 63-78.

Bolto, B. A., D. R. Dixon, et al. (1998). "The use of cation polymers as primary coagulation in water treatment." Proceedings of the 8th Gothenburg Symposium, Prague, Czech Republic, pp. 173-185.

Braghetta, A., F. A. DiGiano, et al. (1997). "Nanofiltration of natural organic matter: pH and ionic strength effects." Journal Of Environmental Engineering-Asce 123(7): 628-641.

Carroll, T., S. King, et al. (2000). "The fouling of microfiltration membranes by NOM after coagulation treatment." Water Research 34(11): 2861-2868.

Causserand, C., M. Nystrom, et al. (1994). "Study Of Streaming Potentials Of Clean And Fouled Ultrafiltration Membranes." Journal Of Membrane Science 88(2-3): 211-222.

Cheryan, M. (1998). "Ultrafiltration and microfiltration handbook." Technomic Publishing Company, USA.

Childress, A. E. and M. Elimelech (1996). "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes." Journal Of Membrane Science 119(2): 253-268.

Cho, J., G. Amy, et al. (2000b). "Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane." Journal Of Membrane Science 164(1-2): 89-110.

Cho, J. W., G. Amy, et al. (1999). "Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes." Water Research 33(11): 2517-2526.

Cho, J. W., G. Amy, et al. (2000a). "Membrane filtration of natural organic matter: comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes." Desalination 127(3): 283-298.

Combe, C., E. Molis, et al. (1999). "The effect of CA membrane properties on adsorptive fouling by humic acid." Journal Of Membrane Science 154(1): 73-87.

Cornelissen, E. (1997). "Membrane fouling in waste water filtration." Enschede, The Netherlands.

Crozes, G., C. Anselme, et al. (1993). "Effect Of Adsorption Of Organic-Matter On Fouling Of Ultrafiltration Membranes." Journal Of Membrane Science 84(1-2): 61-77.

Crozes, G. F., J. G. Jacangelo, et al. (1997). "Impact of ultrafiltration operating conditions on membrane irreversible fouling." Journal Of Membrane Science 124(1): 63-76.

Day, G. M., R. Beckett, et al. (1991). "Characterization Of Natural Organic-Matter From 4 Victorian Fresh-Water Systems." Australian Journal Of Marine And Freshwater Research 42(6): 675-687.

Edzwald, J. K., W. C. Becker, et al. (1985). "Surrogate Parameters For Monitoring Organic-Matter And Thm Precursors." Journal American Water Works Association 77(4): 122-132.

Elimelech, M., W. H. Chen, et al. (1994). "Measuring The Zeta (Electrokinetic) Potential Of Reverse-Osmosis Membranes By A Streaming Potential Analyzer." Desalination 95(3): 269-286.

Fan, L. H., J. L. Harris, et al. (2001). "Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes." Water Research 35(18): 4455-4463.

Farahbakhsh, K., C. Svrcek, et al. (2004). "A review of the impact of chemical pretreatment on low-pressure water treatment membranes." Journal Of Environmental Engineering And Science 3(4): 237-253.

Henry, J. D., L. F. Lawler, et al. (1977). "Solid-Liquid Separation Process Based On Cross Flow And Electrofiltration." Aiche Journal 23(6): 851-859.

Her, N., G. Amy, et al. (2002). "Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC detection." Environmental Science & Technology 36(5): 1069-1076.

Hong, S. K. and M. Elimelech (1997). "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes." Journal Of Membrane Science 132(2): 159-181.

Hosse, M. and K. J. Wilkinson (2001). "Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength." Environmental Science & Technology 35(21): 4301-4306.

Howe, K. J. and M. M. Clark (2002). "Fouling of microfiltration and ultrafiltration membranes by natural waters." Environmental Science & Technology 36(16): 3571-3576.

Huber, S. and F. Frimmel (1996). "Size exclusion chromatography with organic carbon detection (LC-OCD):a fast and reliable method for the characterization of hydrophilic organic matter in natural waters." Vom Wasser 86: 277-90.

Huotari, H. M., I. H. Huisman, et al. (1999). "Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode." Journal Of Membrane Science 156(1): 49-60.

Huotari, H. M., G. Tragardh, et al. (1999). "Crossflow membrane filtration enhanced by an external DC electric field: A review." Chemical Engineering Research & Design 77(A5): 461-468.

Jacangelo, J. G., J. M. Laine, et al. (1995). "Uf With Pretreatment For Removing Dbp Precursors." Journal American Water Works Association 87(3): 100-112.

Jagannadh, S. N. and H. S. Muralidhara (1996). "Electrokinetics methods to control membrane fouling." Industrial & Engineering Chemistry Research 35(4): 1133-1140.

Jones, K. L. and C. R. O''Melia (2000). "Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength." Journal Of Membrane Science 165(1): 31-46.

Jucker, C. and M. M. Clark (1994). "Adsorption Of Aquatic Humic Substances On Hydrophobic Ultrafiltration Membranes." Journal Of Membrane Science 97: 37-52.

Kaiya, Y., Y. Itoh, et al. (1996). "Study on fouling materials in the membrane treatment process for potable water." Desalination 106(1-3): 71-77.

Kimura, K., Y. Hane, et al. (2004). "Irreversible membrane fouling during ultrafiltration of surface water." Water Research 38(14-15): 3431-3441.

Kitis, M., T. Karanfil, et al. (2002). "Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation." Water Research 36(15): 3834-3848.

Korshin, G. V., M. M. Benjamin, et al. (1997). "Adsorption of natural organic matter (NOM) on iron oxide: Effects on nom composition and formation of organo-halide compounds during chlorination." Water Research 31(7): 1643-1650.

Korshin, G. V., C. W. Li, et al. (1997). "Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory." Water Research 31(7): 1787-1795.

Krasner, S. W., J. P. Croue, et al. (1996). "Three approaches for characterizing NOM." Journal American Water Works Association 88(6): 66-79.

Kulovaara, M., S. Metsamuuronen, et al. (1999). "Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane." Chemosphere 38(15): 3485-3496.

Lahoussineturcaud, V., M. R. Wiesner, et al. (1990). "Fouling In Tangential-Flow Ultrafiltration - The Effect Of Colloid Size And Coagulation Pretreatment." Journal Of Membrane Science 52(2): 173-190.

Laine, J. M., J. P. Hagstrom, et al. (1989). "Effects Of Ultrafiltration Membrane-Composition." Journal American Water Works Association 81(11): 61-67.

Leenheer, J. A. (1981). "Comprehensive Approach To Preparative Isolation And Fractionation Of Dissolved Organic-Carbon From Natural-Waters And Wastewaters." Environmental Science & Technology 15(5): 578-587.

Leenher, J. A. and T. I. Noyes (1984). "A filtration and column adsorption system for on-site concentration and frationation of organic substances from large volumes of water." U.S. Geological Water-Supply,Papper 2230.

Lentsch, S., P. Aimar, et al. (1993). "Enhanced Separation Of Albumin Poly(Ethylene Glycol) By Combination Of Ultrafiltration And Electrophoresis." Journal Of Membrane Science 80(1-3): 221-232.

Lin, C. F., Y. J. Huang, et al. (1999). "Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment." Water Research 33(5): 1252-1264.

Lin, C. F., T. Y. Lin, et al. (2000). "Effects of humic substance characteristics on UF performance." Water Research 34(4): 1097-1106.

MacCarthy, P. and R. L. T. Malcolm (1989). "In Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants." Suffer, I. H.,MacCarthy, P.,Eds.; American Chemistry Society: Washington, DC: 55-64.

Malcolm, R. L. and P. Maccarthy (1992). "Quantitative-Evaluation Of Xad-8 And Xad-4 Resins Used In Tandem For Removing Organic Solutes From Water." Environment International 18(6): 597-607.

Nilson, J. A. and F. A. DiGiano (1996). "Influence of NOM composition on nanofiltration." Journal American Water Works Association 88(5): 53-66.

Nystrom, M., K. Ruohomaki, et al. (1996). "Humic acid as a fouling agent in filtration." Desalination 106(1-3): 79-87.

Oussedik, S., D. Belhocine, et al. (2000). "Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina." Desalination 127(1): 59-68.

Owen, D. M., G. L. Amy, et al. (1995). "Nom - Characterization And Treatability." Journal American Water Works Association 87(1): 46-63.

Owen, D. M. and Z. K. C. Amy (1993). "Characterization of natural organic matter and its relationship to treatability." AWWA Research Foundation.

Park, N., Y. Yoon, et al. (2004). "Evaluation of the performance of tight-UF membranes with respect to NOM removal using effective MWCO, molecular weight, and apparent diffusivity of NOM." Desalination 164(1): 53-62.

Peuravuori, J., T. Lehtonen, et al. (2002). "Sorption of aquatic humic matter by DAX-8 and XAD-8 resins - Comparative study using pyrolysis gas chromatography." Analytica Chimica Acta 471(2): 219-226.

Radovich, J. M., B. Behnam, et al. (1985). "Steady-State Modeling Of Electroultrafiltration At Constant Concentration." Separation Science And Technology 20(4): 315-329.

Schafer, A. I., A. G. Fane, et al. (2000). "Fouling effects on rejection in the membrane filtration of natural waters." Desalination 131(1-3): 215-224.

Schafer, A. I., R. Mauch, et al. (2002). "Charge effects in the fractionation of natural organics using ultrafiltration." Environmental Science & Technology 36(12): 2572-2580.

Schmitt-Kopplin, P., A. W. Garrison, et al. (1998). "Capillary electrophoresis in the analysis of humic substances - Facts and artifacts." Journal Of Chromatography A 807(1): 101-109.

Serpone, N., D. Lawless, et al. (1995). "Size Effects On The Photophysical Properties Of Colloidal Anatase Tio2 Particles - Size Quantization Or Direct Transitions In This Indirect Semiconductor." Journal Of Physical Chemistry 99(45): 16646-16654.

Speth, T. F. and R. S. Summers (1996). "Evaluating membrane foulants from conventionally-treated drinking waters." Abstracts Of Papers Of The American Chemical Society 212: 6-ENVR.

Taniguchi, M., J. E. Kilduff, et al. (2003). "Modes of natural organic matter fouling during ultrafiltration." Environmental Science & Technology 37(8): 1676-1683.

Tansel, B., W. Y. Bao, et al. (2000). "Characterization of fouling kinetics in ultrafiltration systems by resistances in series model." Desalination 129(1): 7-14.

Thurman, E. M. (1985). "Organic Geochemistry of Natural Waters." Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht.

Thurman, E. M. and R. L. Malcolm (1981). "Preparative Isolation Of Aquatic Humic Substances." Environmental Science & Technology 15(4): 463-466.

Verdegan, B. M. (1986). "Cross-Flow Electrofiltration Of Petroleum Oils." Separation Science And Technology 21(6-7): 603-623.

von Zumbusch, P., W. Kulcke, et al. (1998). "Use of alternating electrical fields as anti-fouling strategy in ultrafiltration of biological suspensions - Introduction of a new experimental procedure for crossflow filtration." Journal Of Membrane Science 142(1): 75-86.

Wakeman, R. J. (1998). "Electrically enhanced microfiltration of albumin suspensions." Food And Bioproducts Processing 76(C1): 53-59.

Wakeman, R. J. and M. N. Sabri (1995). "Utilizing Pulsed Electric-Fields In Cross-Flow Microfiltration Of Titania Suspensions." Chemical Engineering Research & Design 73(A4): 455-463.

Wakeman, R. J. and E. S. Tarleton (1986). "Experiments using electricity to prevent fouling in membrane filtration." Filtration and Separation 23: 174-176.

Wakeman, R. J. and C. J. Williams (2002). "Additional techniques to improve microfiltration." Separation And Purification Technology 26(1): 3-18.

Weigert, T., J. Altmann, et al. (1999). "Crossflow electrofiltration in pilot scale." Journal Of Membrane Science 159(1-2): 253-262.

Weng, Y.-H. and K.-C. Li (2002). "Electrically enhanced crossflow membrane filtration for treatment of water containing humic acid: a prelimnary study." The 12th Joint KAIST-KYUTU-NTU-NUS Symposium on Environmental Engineering,June 26-29,2002,Taipe,Taiwan,ROC.,95-103.

Wiesner, M. R., J. Hackney, et al. (1994). "Cost Estimates For Membrane Filtration And Conventional Treatment." Journal American Water Works Association 86(12): 33-41.

Yang, G. C. C., T. Y. Yang, et al. (2003). "Crossflow electro-microfiltration of oxide-CMP wastewater." Water Research 37(4): 785-792.

Yuan, W. and A. L. Zydney (1999a). "Humic acid fouling during microfiltration." Journal Of Membrane Science 157(1): 1-12.

Yuan, W. and A. L. Zydney (1999b). "Effects of solution environment on humic acid fouling during microfiltration." Desalination 122(1): 63-76.

Yuan, W. and A. L. Zydney (2000). "Humic acid fouling during ultrafiltration." Environmental Science & Technology 34(23): 5043-5050.

Yukawa, H., K. Shimura, et al. (1983). "Cross Flow Electro-Ultrafiltration For Colloidal Solution Of Protein." Journal Of Chemical Engineering Of Japan 16(4): 305-311.

江謝令函 (2003). "以外加電場輔助掃流過濾處理水中砷及天然有機物." 國立台灣大學環境工程研究所博士論文.

李欣樺 (2004). "消毒副產物有機前質對外加電場薄膜程序之積垢影響研究." 國立台灣大學環境工程研究所碩士論文.

蕭啟鴻 (2004). "腐植酸親疏水性對超過率薄膜積垢阻力之影響." 國立台灣大學環境工程研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔