(3.238.174.50) 您好!臺灣時間:2021/04/16 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:杜旻霏
研究生(外文):Min-Fei Tu
論文名稱:自營氫細菌與零價鎳金屬結合去除三氯乙烯之研究
論文名稱(外文):The study of TCE remove by autotrophic hydrogen-bacteria combined with zero-valence nickel
指導教授:曾四恭曾四恭引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:125
中文關鍵詞:三氯乙烯氫細菌鎳金屬還原脫氯
外文關鍵詞:TCEhydrogen bacterianickelreductive dechlorination
相關次數:
  • 被引用被引用:3
  • 點閱點閱:594
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含氯有機化合物被廣泛使用於工業中,但常因處理或儲存不當而污染土壤及地下水,其中三氯乙烯為污染場址中最常見且含量最高之污染物,而傳統之生物及物化處理方法各具有其優缺點,若要改善各方法之缺失,其中一種可能之方式為將生物及物化方法結合,故本研究擬試以將具有還原脫氯能力之菌種與零價金屬合併處理三氯乙烯。
試驗分別以氫自營菌、零價鎳金屬及兩者合併等三種方法進行三氯乙烯之處理,並提供氫氣做作為電子供給者。結果顯示提供氫氣能增進生物之脫氯反應,將三氯乙烯完全脫氯為烷類,無含氯之中間產物生成;亦能增加零價金屬之還原反應速率,降解速率隨金屬添加量而增加;氫氣亦可減少金屬離子之解離,解離量約為沒有氫氣條件下之0.4倍,唯缺點為仍有少量氯乙烯之累積。
生物及金屬兩者合併後在本批次實驗條件下對三氯乙烯之脫氯速率較金屬及氫自營菌個別脫氯要快,但由於氫細菌與零價金屬同時利用氫氣,造成氫氣供應量不足,因此反應速率與零價鎳金屬差異不大;鎳金屬所產生之氯乙烯有再被生物脫氯之現象,可見兩者合併後對脫氯效果具有加成作用。但本批次試驗之缺點為反應受到氫氣供應量不足之限制,所增加之績效不大。
以固定化技術將零價金屬包埋為顆粒狀,在微量金屬包埋後對三氯乙烯仍具有脫氯之效果,故金屬之包埋在未來進行連續流試驗時具有可行性。
Chlorinated organic compounds are widely used in industrial process and one of the most common and critical contaminant is known as Trichloroethylene (TCE), which contaminated soil and groundwater easily due to inappropriate treatment or storage. Recently, many researches were made to investigate practicable methods for TCE removing via biological, physical or chemical process, however, few were considered to be both effective and economic. This research is to develop a more practicable and feasible method for TCE treatment with a combined biological and chemical process based on synergetic dechlorination reactions by microorganisms and zero-valent metals.
The experiments were carried out by using a combined zero-valent nickel and autotrophic hydrogen-bacteria system and compared with individual systems. The results suggest that hydrogen provided promote biological dechlorination in the individually biological system, TCE was dechlorinated to alkanes completely with no chlorinated intermediates were detected. In zero-valent metal systems, the dechlorination rate was proportional to the amount of metal added, also, supplying of hydrogen gas increased reaction rate possibly by suppressing the ionization of zero-valent metals (60% decrease in ionic form), however, trace-amount accumulation of chloroethylene was observed.
Dechlorination rate of TCE by combined biological and zero-valent metal process was higher than individual ones, further dechlorination of chloroethylene also demonstrated synergetic effects by this combined system, however, the biological system showed limited enhancement which may caused by insufficient effectiveness of hydrogen gas supply.
The PVA-alginic acid immobilized zero-valance nickel still had the dechlorination ability, so the immobilized zero-valance nickel can do the further research in the continue flow test.
摘要 I
英摘...............................................................................................II
目錄 II
表目錄 VI
圖目錄 VII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究方法 3
第二章 文獻回顧 4
2-1 含氯有機化合物 4
2-2 三氯乙烯 (Trichloroethylene;TCE)之基本介紹 6
2-3 地下水中含氯化合物之處理方法 8
2-3-1 物理處理方法 8
2-3-1-1 活性碳吸附法 8
2-3-1-2抽除處理法 (pump and treat) 9
2-3-1-3注氣吹除法 (air sparging) 9
2-3-1-4電熱法 (electrical heating) 9
2-3-1-5 土壤蒸汽萃取法 (soil vaccum extraction;SVE) 10
2-3-2 化學處理方法 11
2-3-2-1 現地化學氧化法(In situ chemical oxidation) 11
2-3-2-2 電動力法 (Electrokinetics) 11
2-3-2-3 透水性反應牆 (Permeable reactive barrier; PRB) 12
2-3-2-4 零價金屬還原脫氯反應 13
2-3-3生物復育(Bioremediation) 20
2-3-3-1 好氧生物復育 20
2-3-3-2 厭氧生物復育 22
2-3-3-3 三氯乙烯生物降解之機制 23
2-3-3-4 具還原脫氯能力菌種之相關研究 28
2-4自營氫細菌與零價鎳金屬結合之優點 32
2-5 薄膜式生物反應槽 34
2-6 微生物固定化擔體之應用 36

第三章 實驗流程與設計 38
3-1 實驗設計與流程 38
3-2 菌種來源與馴養 41
3-2-1 菌種來源 41
3-2-2 菌種馴養 42
3-3 血清瓶批次實驗 45
3-3-1 懸浮菌液及零價鎳金屬之批次試驗 45
3-3-2 鎳粉添加量試驗 46
3-3-3 氫氣對鎳金屬脫氯之影響 47
3-3-4 零價鎳金屬固定化之批次試驗 47
3-4細胞及金屬固定化之製作 48
3-5 上部空間氣體分析--氣相層析法 49
3-6 二價鎳離子濃度分析-火焰式原子吸收光譜(AA-Flam) 50
3-7 ORP、pH 50
3-8 菌液濃度--OD600 50
3-9 低真空掃瞄式電子顯微鏡觀察(LV-SEM) 51
3-10 鎳金屬表面之元素分析(SEM-EDS) 52
3-11 菌相分析 53
3-11-1 DNA 萃取(DNA Extraction) 55
3-11-2 水平凝膠電泳 57
3-11-3 聚合酶鏈鎖反應(PCR) 58
3-11-4 變性梯度凝膠電泳(DGGE) 60
3-11-5 DNA 純化 63
第四章 結果與討論 65
4-1 零價鎳金屬降解TCE之血清瓶批次試驗 65
4-1-1 供氫系統中不同鎳金屬添加量對TCE之去除效率 65
4-1-1-1 2g零價鎳金屬降解TCE反應速率之探討 65
4-1-1-2 0.05g Ni0降解TCE 70
4-1-1-3 不同Ni0添加量對TCE之還原脫氯速率之比較 74
4-1-2 供應氫氣對鎳金屬降解TCE之影響 77
4-1-3 小結 79
4-2 自營氫細菌降解TCE之血清瓶批次試驗 80
4-2-1 純菌降解TCE之批次試驗 80
4-2-2 混合氫自營菌降解TCE之批次試驗 85
4-2-3 小結 89
4-3 自營氫細菌與零價鎳金屬結合降解TCE之批次試驗 90
4-3-1 氫細菌與金屬結合之脫氯反應 90
4-3-2 氫細菌與零價鎳金屬結合與個別脫氯反應之比較 95
4-3-3 小結 100
4-4 零價鎳金屬元素半定量分析 101
4-4-1小結 109
4-5 微生物分析 110
4-5-1 SEM菌相觀察 110
4-5-2 菌種鑑定 110
4-6 零價鎳金屬包埋對TCE降解之影響 111
第五章 結論與建議 113
5-1 結論 113
5-2 建議 115
Reference 116
附錄Ι SEM菌照 122
附錄Π 菌種鑑定結果 123
Reference
1.Acar, Y. B., R. J Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka and R. Parker. 1995. “Electrokinetic Remediation: Basics and Technology Status.” Journal of Hazardous Materials. 40: 117-137.
2.Baggi, G., V. Andreoni, S. Bernasconi, L. Cavalca and M. Zangrossi. 2002. Co-Metabolic Degradation of Mixtures of Monochlorophenols by Phenol-Degrading Microorganisms. Annals Microbiol. 52 (2): 133-143.
3.Bouchard, B., R. Bisaillon, R. Villemur, G. McSween, F. Lepine and J. C. Bisaillon. 1996. Isolation and Characterization of Desulfitobacterium frappieri sp. Nov. an Anaerobic Bacterium which Reductively Dechlorinates Pentachlorophenol to 3-Chlorophenol. Int. J. Syst. Bacteriol. 46: 1010-1015.
4.Burris, S. R., T. J. Campbell and B. S. Manoranjan. 1995. Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environ. Sci. Technol. 29: 2850-2855.
5.Campbell, T. J., D. R. Burris, A. C. Roberts and J. R. Wells. 1997. Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System. Environ. Toxicol. Chemist. 16(4): 625-630.
6.Chang, C. C. and S. K. Tseng. 1998. Immobilization of Microorganism Using PVA Crosslinked with Sodium Nitrate. Biotechnol. Tech. 12(12): 865-868.
7.Chang, C. C., S. K. Tseng and Y. J. Chang. 1999. A Novel Double-Membrane System for Simultaneous Nitrification and Denitrification in a Single Tank. Letters in Appl. Microbiol. 28: 453-456.
8.Cheng, S. F. and S. C. Wu. 2000. The Enhancement Methods for the Degradation of TCE by Zero-Valent Metals. Chemosphere. 41: 1263-1270.
9.Christiansen, N. and B. K. Ahring. 1996. Deslfitobacterium hafniense sp. nov., an Anaerobic, Reductively Dechlorination Bacterium. Int. J. Syst. Bacteriol. 46: 442-448.
10.Clement P., V. Matus, L. Cadenas, B.Gonzalez. 1995. Degradation of Trichlorlphenols by Alcaligenes eutrophus JMP134. FEMS Microbiol. Letters. 127: 51-55.

11.Cole, J. R., A. L. Cascarelli, W. W. Mohn and J. M. Tiedje. 1994. Isolation and Characterization of a Novel Bacterium Growing via reductive Dehalogenation of 2-Chlorophenol. Appl. Environ. Microbiol. 60: 3536-3542.
12.Cole, J. R., B. Z. Fathepure and J. M. Tiedje. 1995. Tetrachloroethene and 3-Chlorobenzoate Dechlorination Activities are Co-Induced in Desulfomonile tiedjei DCB-1. Biodegradation. 6: 167-172.
13.DOE. 1994. Technology Application Analysis: Petroleum Product Recovery and Contaminated Groundwater Remediation Amoco Petroleum Pipeline Constantine, MI, prepared by Stone & Webster Environmental Technology and Services.
14.Edelstein, W. A., I. E. Iben, T., O. M. Mueller, E. E. Uzgiris, H. R. Philipp and P. B. Roemer. 1994. “Radiofrequency Ground Heating for Soil Remediation : Science and Engineering.” Environ. Progress. 13(4): 247-252.
15.EPA. 1995. In Situ Remediation Technology Status Report: Thermal Enhancements. EPA 542-K-94-009, Describes Field Demonstrations or Full-Scale Applications of in Situabiotic Technologies for Nonaqueous Phase Liquids and Ground-Water Treatment (clu-in.com).
16.EPA. April, 1996. Engineering Forum Issue Paper: Soil Vapor Extraction Implementation Experiences. EPA 540/F-95/030, US EPA Office of Solid Waste and Emergency Response.
17.Fennelly, J. P. and A. L. Roberts. 1998. Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environ. Sci. Technol. 32: 1980-1988.
18.Fetzner, S. 1998. Bacterial Dehalogenation. Appl. Microbiol. Biotechnol. 50: 633-657.
19.Gates, D. D., and R. L. Siegrist. 1995. “In-situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide.” Journ. Environ. Enginee., ASCE. 121(9): 639-644.
20.Gerritse, J., V., T. M. P. Renard, P. A. Gomes, M. D. Lawson, Colins and J. C. Gottschal. 1996. Deslfitobacterium sp. Strain PCE1, an Anaerobic Bacterium that can Grow by Reductive Dechlorination of Tetrachloroethene or Ortho-Chlorinated Phenols. Arch. Microbiol. 165: 132-140.


21.Golovleva, L. A., O. E. Zaborina and A. Y. Arinbasarova. 1993. Degradation of 2,4,6-TCP and a Mixture of Isomeric Chlorophenol by Immobilized Streptiomyces-Rochei-303. Appl. Environ. Microbiol. 38 (6): 815-819.
22.Granzow, S. 1998. Isolierung and Charakterisierung Eines Neuen Tetrachlorethen Dechlorierenden Strict Anaeoben Bakteiums, Desulfitobacterium frappiei Stamm PCE-S. Ph.D. Thesis, Universitat Stuttgart, Germany.
23.Ho, C. M., S. K. Tseng and Y. J. Chang. 2001. Simulation Nitrification and Denitrification Using an Autotrophic Membrand-Immobilized Biofilm Reactor. Letters in Appl. Microbiol. 35: 481-485.
24.Holliger, C., D. Hahn, H. Hamsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss. and A.J.B. Zehnder. 1998. Dehalobacter Restricus Gen. Nov. and Sp. Nov., a Strictly Anaerobic Bacterium that Reductively Dechlorinates Tetra- and Trichloroethene in an Anaerobic Respiration. Arch. Microbiol. 169: 313-321.
25.Holliger, C., G. Schraa, A. J. M. Stams and A. J. B. Zehnder. 1993. A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl. Environ. Microbiol. 59: 2991-2997.
26.Holliger, C., G. Wohlfarth and G. Diekert. 1999. Reductive Dechlorination in the Energy Metabolism of Anaerobic Bacteria. FEMS Microbiol. Reviews. 22: 383-398.
27.In Situ Remediation Technology Status Report: Thermal Enhancements: EPA 542-K-94-009, Describes Field Demonstrations or Full-Scale Applications of in Situ Abiotic Technologies for Nonaqueous Phase Liquids and Ground-Water Treatment. [clu-in.com]
28.Jahng, D., C. S. Kim, R. S. Hanson and T. K. Wood. 1996. Optimization of Trichloroethylene Degradation Using Soluble Methane Monooxygenase of Methylosinus Trichosporium OB3b Expressed in Recombinant Bacteria. Biotechnol. Bioenginee. 51(3): 349-359.
29.Johnson, T. L., M. M. Scherer, and P. G. Tratnyek. 1996. “Kinetics of Halogenated Organic Compound Degradation by Iron Metal.” Environ. Sci. Techn. 30(8): 2634-2640.


30.Lang, M. M., P. V. Roberts and L. Semprini. 1997. “Model Simulations in Support of Field Scale Design and Operation of Bioremediation Based on Cometabolic Degradation.” Ground Water,.35(4): 565-573.
31.Lee, T. H., M. Ike, M. Fujita. 2002. A Reactor System Combining Reductive Dechlorination with Cometabolic Oxidation for Complete Degradation of Tetrachloroentylene. Journ. Environ. NCES-China, Oct. 4: 445-450.
32.Lovelace, K. A. 1997. Evaluation the Technical Impracticability of Groundwater Cleanup. International conference on groundwater quality protection, Taipei. 165-179.
33.Lundegard, P. D., and D. LaBrecque. 1995. “Air Sparging in a Sandy Aquifer (Florence, Oregon, U.S.A.): Actual and Apparent Radius of Influence.” Journal of Contaminant Hydrology. 19: 1-27.
34.Matheson, L. J., and P. G. Tratnydk. 1994. “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal.” Environ. Sci. Techn. 28(12):2045-2053.
35.McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T. and Carrothers, T. J. 1998. “Full-Scale Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection.” Environ. Sci. Techn. 32(1): 88-100.
36.McCray, J. E., and R. W. Falta. 1996. “Defining the Air Sparging Radius of Influence for Ground-Water Remediation.” Journal of Contaminant Hydrology. 24: 25-52.
37.Miller, C. M., R. L. Valentine, M. E. Roehl and P. J. J. Alvarez. 1996. “Chemical and Microbological Assessment of Pendimethalin-Contaminated Soil After Treatment With Fenton''s Reagent.” Wat. Res. 30(11): 2579-2586.
38.Miller, E., G. Wohlfarth and G. Diekert. 1997. Studies on Tetrachloroethene Respiration in Dehalospirllum Multivorans. Arch. Microbiol. 166: 379-387.
39.Neumann, A., G. Wohlfarth and G. Diekert. 1995. Properties of the Tetrachlorroethene and Trichloroethene Dehalogenase of Dehalospirillum multivorans. Arch. Microbiol. 163: 276-281.
40.NRC. 1994. Alternatives for Ground-water Cleanup, National Academy Press, Washington D.C. [nas.edu/nrclib.nsf]

41.Robets, A. L., L. A. Totten, W. A. Arnold, D. R. Burris and T. J. Campbell. 1996. Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. Environ. Sci. Technol. 30(8): 2654-2659.
42.Sanford, R. A., J. R. Cole, F. E. Loffler and J. M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. Nov., which Grows by Coupling the Oxidation of Lactate to the Reductive Dechlorination of 3-Chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62: 3800-3808.
43.Schnarr, M., Truax, C., Farquar, G., Hood, E., Gonullu, T., and Stickney, B. 1998. “Laboratory and Controlled Field Experiments Using Potassium Permanganate to Remediate Trichloroethylene and Perchloroethylene DNAPLs in Porous Media.” Journal of Contaminant Hydrology. 29: 205-224.
44.Scholz-Muramatsu, H., A. Neumann, M. Mebmer, E. Moore and G. Diekert. 1995. Isolation and Characterization of Dehalospirillum Multivorans Gen. Nov. Sp. Nov., a Tetrachloroethene-Utilizing, Strictly Anaerobic Bacterium. Arch. Microbiol. 163: 48-56.
45.Schumacher, W. and C. Holliger. 1996. The Proton Electron Ratio of the Menaquinone-Dependent Electron Transport from Dihydrogen to Tetrachloroethene in ‘Dehalobacter restrictus’. J. Bacteriol. 178: 2328-2333.
46.Staudinger, J., P. V. Roberts, and J. D. Hartley. 1997. “A Simplified Approach for Preliminary Design and Process Performance Modeling of Soil Vapor Extraction Systems.” Environ. Prog. 16(3): 215-227.
47.Townsend, G.T. and J.M. Suflita. 1997. Influence of Sulfur Oxyanions on Reductive Dehaolgenation Activities in Desulfomonile tiedjei. Appl. Environ. Microbiol. 63: 3594-3599.
48.Valenzuela, J., U. Bumann, R. Cespedes, L. Padilia and B. Gonazlez. 1997. Degradation of Chlorophenols by Alcaligenes eutrophus JMP134(pJP4) in Bleached Krafe Mill Effluent. Appl. Environ. Microbiol. 63(1): 227-232.
49.Wang, J., P. Blowers and J. Farrell. 2004. Understanding Reduction of Carbon Tetrachloride at Nickel Surfaces. Environ. Sci. Technol. 38: 1576-1581.
50.Wild, A., R. Hermann and T. Leisinger. 1996. Isolation of an Anaerobic Bacterium which Reductively Dechlorinates Tetrachloroethene and Trichloroethene. Biodegradation. 7: 507-511.

51.William, A. A. and A. L. Roberts. 2000. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environ. Sci. Technol. 34: 1794-1805.
52.Xavier, M. G., V. Tandoi, J. M. Gossett and S. H. Zinder. 1995. Characterizatoin of an H2-Utilizing Enrichment Culture That Reductively Dechlorinates Tetrachloroethene to Binyl Chloride and Ethene in the Absene of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol. 61(11): 3928-3933.
53.行政院環保署,中文毒理資理庫。
54.許益源、張王冠、呂慶慧、羅慧瑋、陳誼彰,1998,「含重金屬土壤萃取及地下水曝氣技術」,工業技術研究院,化學工業研究所報告。
55.程淑芬,2000。「斗閘式現地地下水污染復育技術之探討-含氯有機化合物以零價金屬反應性透水牆還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔