跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/26 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林至芃
研究生(外文):Chih-Peng Lin
論文名稱:新生兒時期發炎性疼痛對大鼠成年後長期傷痛行為與脊髓背角神經元經突觸傳遞之影響
論文名稱(外文):Long term effects of neonatal inflammatory pain on the nocifensive behaviors and trans-synaptical transmission in the adult rat spinal cord dorsal horn neurons
指導教授:孫維仁孫維仁引用關係
指導教授(外文):Wei-Zen Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:54
中文關鍵詞:新生兒發炎疼痛二氧化碳雷射疼痛閾值突觸NK1受體mitogen activated-protein kinase (MAPK) pathwayextracellular signal-regulated kinase (ERK)
外文關鍵詞:neonateinflammationpainCO2 pulse laserpain thresholdsynapseNK1 receptormitogen activated-protein kinase (MAPK) pathwayextracellular signal-regulated kinase (ERK)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫療科技的進步,大幅提升早產兒與重症嬰幼兒的存活率。但此時期之疼痛刺激若未得到適當治療,會引發長期生理與行為上的異常反應。動物模式中更證實,新生大白鼠接受發炎性之持續疼痛刺激後,周邊及脊髓感覺神經系統的發育會產生永久性的變化。包括解剖構造上,初級疼痛神經元在脊髓後角的異樣分佈和分枝增生;電生理上,脊髓背角神經元對疼痛及非疼痛刺激產生過度興奮;疼痛刺激的生化證據c-Fos蛋白在脊髓背角的表現增高等。

實驗材料與方法:將Complete Freund,s Adjuvant (CFA)注射於出生第一天(P1)及第21天(P21)大白鼠之左側後腳掌皮下,引發持續的發炎性疼痛為期五到七天。對照組(N)則不給予致發炎物質。然後於成鼠期(出生後8週),對這些大白鼠進行疼痛行為學上的觀測,利用二氧化碳脈衝雷射熱能作為短暫性疼痛刺激源,以固定輸出功率5 watt,以5ms為單位,調整脈衝輸出時間,刺激兩側後腳掌皮膚,測定疼痛閾值。並以超閾值刺激,進行傷痛行為的觀測。

對於初級感覺神經元經突觸傳遞疼痛訊息至脊髓內二級神經元的訊息強度之活體內觀察以疼痛的神經傳導物質substance P與其受體NK1Receptor的作用為指標。以歷經新生鼠時期疼痛的成年大鼠(P1)雙側後腳掌皮下注射5%福馬林引發週邊疼痛,8分鐘後進行動物犧牲、灌流固定後取得腰椎第四節第五節之脊髓(L4-L5),冷凍切片後對脊髓切片進行NK1受體的免疫螢光染色,比較兩側螢光免疫反應相對強度,並進行分析。

對於脊髓背角二級感覺神經元被疼痛刺激所活化的程度,則以mitogen activated-protein kinase(MAPK)pathway中extracellular signal-regulated kinase(ERK)被磷酸化的程度作為指標,成年大鼠雙側後腳掌皮下注射5%福馬林後5分鐘犧牲,以4℃冰生理食鹽水及固定液進行灌流,冷凍切片後進行pERK之免疫組織染色,並定量脊髓切片中被活化的神經元個數,進行比較分析。

接受CFA注射側,與未注射CFA側,以Paired-T test 比較;三組不同處理的老鼠的反應以ANOVA進行統計分析。統計分析軟體採用STATA 8.0。數據結果以(Mean ± S.E.M)表示,P值小於0.05視為統計上有差異。

結果:共分為三個部分,總結如下:
(1)二氧化碳脈衝雷射熱刺激的疼痛閾值與傷痛行為測定結果顯示:歷經新生兒時期發炎性疼痛的P1組其”未”接受CFA注射之右後腳(P1_nonCFA)疼痛閾值較接受發炎疼痛的左腳(P1_CFA)為高(71.66±1.47 vs 65.00±1.86 p=0.004);同時也較P21組兩側及N組為高(ANOVA,F=5.38,p=0.0030)。P1組CFA注射腳(P1-left_CFA)的疼痛閾值與P21組(無論接受CFA注射與否)及N組,皆無統計上差異。P21組左右兩側無組內差異。P21組與N組之間亦無差異。以超閾值之二氧化碳脈衝雷射熱刺激(5 watts,200 ms)引發之傷痛行為包含抬腳與舔腳,其結果皆顯示歷經新生兒疼痛的P1組CFA注射腳(P1_CFA)表現明顯較強烈的傷痛行為,強於P1_ nonCFA、P21組及N組(ANOVA,F=10.57,p=0.0001)。

(2)P1組於成年期再次接受疼痛刺激,支配後腳掌感覺傳入訊息的腰椎脊髓第四節第五節(L4-L5)其脊髓背角經突觸訊息傳遞強度的指標NK1 Receptor免疫螢光反應,在CFA注射側(P1_CFA side)明顯強於對側(P1_nonCFA side)。

(3)在支配後腳掌感覺傳入訊息的腰椎脊髓第四節第五節(L4-L5)其脊髓背角二級感覺神經元,接受週邊疼痛刺激後短期內以ERK的磷酸化作為其活化程度的指標。pERK(+)神經元數量在L4與L5皆顯示:歷經新生兒疼痛的P1 CFA注射側(P1_CFA)明顯多於P1未接受CFA注射的對側(P1_nonCFA)又多於P21組與N組。(ANOVA,L4:F=30.6,p<0.0001;L5:F=49.36,p<0.0001)。

結論:新生鼠時期歷經發炎性疼痛的成鼠,在行為上表現較高的疼痛閾值及較強烈之傷痛行為。同時在功能上,新生鼠時期歷經疼痛側,其脊髓背角經突觸訊息傳遞較未曾有疼痛暴露的另一側,明顯有被強化的情形。當成鼠接受相同強度外界刺激時,曾歷經新生兒疼痛側脊髓背角中二級神經元活化程度增加。而類似的變化並不會出現於青少年鼠時期歷經疼痛經驗的成鼠,這暗示了新生兒時期為神經發育關鍵期,此期間內的疼痛經驗會造成永久性的影響。
Advances in medical technology have significantly improved survival among medically compromised premature babies. However, poorly managed pain during this period will result in long-term physiologic and behavioral consequences. Animal studies reveal that neonatal peripheral inflammatory pain results in long-standing changes on the development of nociceptive neuronal circuitry. Morphologically, fine primary afferent fibers termination area in spinal cord dorsal horn expands longitudinally and sprouts into deeper lamina. Electrophysiologic study shows increase in background activity and responses to noxious and non-noxious stimuli. The distribution and extent of “Fos like immunoreactivity” (a marker of post-synaptic activation) in spinal cord dorsal horn is also increased.

Materials and methods: On postnatal day 1 (P1) and day 21 (P21), rat pups were intraplantarlly injected with complete Freund’s adjuvant (CFA). Inflammatory pain was thus induced on the left hind paw and lasted for 5-7 days. Control group (N) rats wer left untreated. All animals were allowed to mature into adulthood without further manipulation. Further assessments were done at 8 weeks of age.

We determined the pain thresholds and nocifensive behaviors among all 3 different treatment groups (P1, P21 and N) bilaterally by CO2 pulse laser stimulation. Pain thresholds were determined by serially increases of the laser pulse duration (5 ms increaments) with fixed CO2 pulse laser output energy to 5 watts until leg withdrawal were elicited. Nocifensive behaviors were induced by supra-threshold laser stimulation (5watts, 200ms). Leg-lifting and licking times were recorded.

For accessing the trans-synapticall transmission, interactions of nociceptive neuromodulator- substance P and it receptor- NK1 receptor were analysed. P1 rats were intraplantarlly injected bilaterally with 5% fomalin. Rats were sacrificed 8 minutes after the intense pain rechallenge. After transcardially perfusion and fixation, L4-L5 spinal cord were retrieved, cryosectioned and processed for substance P receptor - NK1 Receptor (NK1R) immunofluorescent staining. Relative immunofluorescent density was measured.

For analysis of dorsal horn secondary sensory neuron activation, all 3 treatment groups (P1, P21 and N) were intraplantarlly injected bilaterally with 5% fomalin to induce intense pain rechallenge. Five minutes later, rats were sacrificed and transcardially perfused and fixed by 4℃ fixatives. L4-L5 spinal cord were retrieved, cryosectioned and processed for phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry staining by ABC method. Numbers of pERK (+) neurons were counted and compared.

All data were presented as mean±SEM, Paired T test was performed for side-by-side comparison. ANOVA test was performed for comparison among the 3 treatment groups. P<0.05 was considered statistically significant. All analysis was assisted by statistic software STATA 8.0.

Results:
(1) Pain thresholds assessed by CO2 pulse laser stimulation showed that thresholds were significantly higher in P1_nonCFA side than in P1_CFA side (71.66±1.47 vs 65.00±1.86 p=0.004). P1_nonCFA side had greater pain threshold than P21 and N groups as well. (ANOVA,F=5.38,p=0.0030). The difference of pain thresholds among P1_CFA side, P21 and N groups were not significant. Nocifensive behaviors induced by supra-threshold pain stimulation was significant greater in P1_CFA than in P1_non CFA, P21 and N groups. (ANOVA, F=10.57, p=0.0001)

(2)In both L4 and L5, after 8 minutes of intense pain rechallenge, the NK1R relative immunofluorescent densities were significantly greater in P1_CFA side than in P1_nonCFA side.

(3)In both L4 and L5, after intense pain rechallenge, the number of pERK (+) neurons of superficial dorsal horn was significantly greater in P1_CFA side than in P1_nonCFA side and than in P21 and N groups. (P1_CFA > P1_nonCFA > P21=N).

Conclusion: Adult rat experienced neonatal inflammatory insult has higher pain threshold and stronger nocifensive behaviors. When suffering from intense peripheral pain rechallenge, it has stronger dorsal horn trans-synaptical transmission at the neonatal insult site. It has more superficial dorsal horn neurons activated by peripheral noxious stimulation, especially at neonatal insult site. Similar responses cannot be elicited in adult rat experienced juvenile inflammatory pain. These long term changes of nociceptive signal transduction happen only when the neonatal insults occurred during “window of vulnerability”.
一 中文摘要 4
二 英文摘要 6
三 研究背景與目的 8
四 研究方法 15
五 結果 19
六 討論 22
七 臨床意義與未來展望 29
八 結論 31
九 參考文獻 32
十 圖表 40
Abbadie C, Brown JL, Mantyh PW, Basbaum AI. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 1996;70(1):201-209.
Abbadie C, Trafton J, Liu H, Mantyh PW, Basbaum AI. Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. Journal of Neuroscience 1997;17(20):8049-8060.
Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annual Review of Pharmacology & Toxicology 2002;42:135-163.
Aley KO, Martin A, McMahon T, Mok J, Levine JD, Messing RO. Nociceptor sensitization by extracellular signal-regulated kinases. Journal of Neuroscience 2001;21(17):6933-6939.
Alvares D, Torsney C, Beland B, Reynolds M, Fitzgerald M. Modelling the prolonged effects of neonatal pain. Progress in Brain Research 2000;129:365-373.
Anand KJ. Clinical importance of pain and stress in preterm neonates. Biology of the Neonate 1998;73(1):1-9.
Anand KJ. Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med 2001;155(2):173-180.
Anand KJ, Coskun V, Thrivikraman KV, Nemeroff CB, Plotsky PM. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiology & Behavior 1999;66(4):627-637.
Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. New England Journal of Medicine 1987;317(21):1321-1329.
Andrews KA, Desai D, Dhillon HK, Wilcox DT, Fitzgerald M. Abdominal sensitivity in the first year of life: comparison of infants with and without prenatally diagnosed unilateral hydronephrosis. Pain 2002;100(1-2):35-46.
Barker DP, Rutter N. Exposure to invasive procedures in neonatal intensive care unit admissions. Archives of Disease in Childhood Fetal & Neonatal Edition 1995;72(1):F47-48.
Beland B, Fitzgerald M. Influence of Peripheral Inflammation on the Postnatal Maturation of Primary Sensory Neuron Phenotype in Rats. Journal of Pain 2001;2(1):36-45.
Bhutta AT, Rovnaghi C, Simpson PM, Gossett JM, Scalzo FM, Anand KJ. Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiology & Behavior 2001;73(1-2):51-58.
Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. Journal of Comparative Neurology 1990;296(4):517-530.
Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003;424(6951):938-942.
Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, Tachibana T, Liu Y, Noguchi K. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. Journal of Neuroscience 2002;22(17):7737-7745.
De Felipe C, Herrero JF, O''Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, Cervero F, Hunt SP. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P.[see comment]. Nature 1998;392(6674):394-397.
English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. Journal of Biological Chemistry 1997;272(31):19103-19106.
Fan RJ, Shyu BC, Hsiao S. Analysis of nocifensive behavior induced in rats by CO2 laser pulse stimulation. Physiol Behav 1995;57(6):1131-1137.
Fiore RS, Murphy TH, Sanghera JS, Pelech SL, Baraban JM. Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. Journal of Neurochemistry 1993;61(5):1626-1633.
Fitzgerald M, Beggs S. The neurobiology of pain: developmental aspects. Neuroscientist 2001;7(3):246-257.
Galan A, Cervero F, Laird JM. Extracellular signaling-regulated kinase-1 and -2 (ERK 1/2) mediate referred hyperalgesia in a murine model of visceral pain. Brain Research Molecular Brain Research 2003;116(1-2):126-134.
Gioia M, Galbiati S, Rigamonti L, Moscheni C, Gagliano N. Extracellular signal-regulated kinases 1 and 2 phosphorylated neurons in the tele- and diencephalon of rat after visceral pain stimulation: an immunocytochemical study. Neuroscience Letters 2001;308(3):177-180.
Gioia M, Moscheni C, Galbiati S, Gagliano N. Immunocytochemical localization of extracellular signal-regulated kinases 1 and 2 phosphorylated neurons in the brainstem of rat following visceral noxious stimulation. Neuroscience Letters 2003;349(3):167-170.
Grunau RE, Holsti L, Haley DW, Oberlander T, Weinberg J, Solimano A, Whitfield MF, Fitzgerald C, Yu W. Neonatal procedural pain exposure predicts lower cortisol and behavioral reactivity in preterm infants in the NICU. Pain 2005;113(3):293-300.
Grunau RV, Whitfield MF, Petrie JH. Pain sensitivity and temperament in extremely low-birth-weight premature toddlers and preterm and full-term controls. Pain 1994;58(3):341-346.
Grunau RV, Whitfield MF, Petrie JH, Fryer EL. Early pain experience, child and family factors, as precursors of somatization: a prospective study of extremely premature and fullterm children. Pain 1994;56(3):353-359.
Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatrica Supplement 1997;422:85-88.
Henry JL, Yashpal K, Pitcher GM, Chabot J, Coderre TJ. Evidence for tonic activation of NK-1 receptors during the second phase of the formalin test in the Rat. Journal of Neuroscience 1999;19(15):6588-6598.
Hokfelt T, Zhang X, Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications.[see comment]. Trends in Neurosciences 1994;17(1):22-30.
Honor P, Menning PM, Rogers SD, Nichols ML, Basbaum AI, Besson JM, Mantyh PW. Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. Journal of Neuroscience 1999;19(17):7670-7678.
Howard RF. Current status of pain management in children. JAMA 2003;290(18):2464-2469.
Hua XY, Chen P, Polgar E, Nagy I, Marsala M, Phillips E, Wollaston L, Urban L, Yaksh TL, Webb M. Spinal neurokinin NK1 receptor down-regulation and antinociception: effects of spinal NK1 receptor antisense oligonucleotides and NK1 receptor occupancy. Journal of Neurochemistry 1998;70(2):688-698.
Huang KH, Shyu BC. Differential stress effects on responses to noxious stimuli as measured by tail-flick latency and squeak threshold in rats. Acta Physiologica Scandinavica 1987;129(3):401-406.
Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nature Reviews Neuroscience 2001;2(2):83-91.
Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 1987;328(6131):632-634.
Ishigooka M, Zermann DH, Doggweiler R, Schmidt RA, Hashimoto T, Nakada T. Spinal NK1 receptor is upregulated after chronic bladder irritation. Pain 2001;93(1):43-50.
Jasmin L, Rabkin SD, Granato A, Boudah A, Ohara PT. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 2003;424(6946):316-320.
Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature Neuroscience 1999;2(12):1114-1119.
Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. Journal of Neuroscience 2002;22(2):478-485.
Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosciences 2003;26(12):696-705.
Ji RR, Strichartz G. Cell signaling and the genesis of neuropathic pain. Science''s Stke [Electronic Resource]: Signal Transduction Knowledge Environment 2004;2004(252):reE14.
Johnston CC, Collinge JM, Henderson SJ, Anand KJ. A cross-sectional survey of pain and pharmacological analgesia in Canadian neonatal intensive care units. Clinical Journal of Pain 1997;13(4):308-312.
Johnston CC, Stevens BJ. Experience in a neonatal intensive care unit affects pain response. Pediatrics 1996;98(5):925-930.
Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. Journal of Neuroscience 2002;22(20):9086-9098.
Lidow MS. Long-term effects of neonatal pain on nociceptive systems. Pain 2002;99(3):377-383.
Lidow MS, Song ZM, Ren K. Long-term effects of short-lasting early local inflammatory insult. Neuroreport 2001;12(2):399-403.
Ling QD, Chien CC, Wen YR, Fu WM, Sun WZ. The pattern and distribution of calcitonin gene-related peptide (CGRP) terminals in the rat dorsal following neonatal peripheral inflammation. Neuroreport 2003;14(15):1919-1921.
Lippmann M, Nelson RJ, Emmanouilides GC, Diskin J, Thibeault DW. Ligation of patent ductus arteriosus in premature infants. British Journal of Anaesthesia 1976;48(4):365-369.
Mantyh PW. Neurobiology of substance P and the NK1 receptor. Journal of Clinical Psychiatry 2002;63(Suppl 11):6-10.
Mantyh PW, DeMaster E, Malhotra A, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR, Maggio JE, et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 1995;268(5217):1629-1632.
Mantyh PW, Hunt SP. Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends in Neurosciences 2004;27(10):582-584.
Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR, Li J, Daughters RS, Lappi DA, Wiley RG, Simone DA. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor.[see comment]. Science 1997;278(5336):275-279.
Marsh DF, Hatch DJ, Fitzgerald M. Opioid systems and the newborn. British Journal of Anaesthesia 1997;79(6):787-795.
McCarson KE, Krause JE. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. Journal of Neuroscience 1994;14(2):712-720.
Molander C, Xu Q, Grant G. The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. Journal of Comparative Neurology 1984;230(1):133-141.
Neumann S, Doubell TP, Leslie T, Woolf CJ. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 1996;384(6607):360-364.
Obata K, Noguchi K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sciences 2004;74(21):2643-2653.
Oberlander TF, Grunau RE, Whitfield MF, Fitzgerald C, Pitfield S, Saul JP. Biobehavioral pain responses in former extremely low birth weight infants at four months'' corrected age. Pediatrics 2000;105(1):e6.
Peng YB, Ling QD, Ruda MA, Kenshalo DR. Electrophysiological changes in adult rat dorsal horn neurons after neonatal peripheral inflammation. Journal of Neurophysiology 2003;90(1):73-80.
Peters JW, Koot HM, de Boer JB, Passchier J, Bueno-de-Mesquita JM, de Jong FH, Duivenvoorden HJ, Tibboel D. Major surgery within the first 3 months of life and subsequent biobehavioral pain responses to immunization at later age: a case comparison study. Pediatrics 2003;111(1):129-135.
Peters JW, Schouw R, Anand KJ, van Dijk M, Duivenvoorden HJ, Tibboel D. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain 2005;114(3):444-454.
Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB. Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Molecular & Cellular Neurosciences 2002;21(4):684-695.
Porter FL, Grunau RE, Anand KJ. Long-term effects of pain in infants. Journal of Developmental & Behavioral Pediatrics 1999;20(4):253-261.
Porter FL, Wolf CM, Gold J, Lotsoff D, Miller JP. Pain and pain management in newborn infants: a survey of physicians and nurses. Pediatrics 1997;100(4):626-632.
Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, Dubner R, Lidow MS. Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 2004;110(3):588-596.
Reynolds ML, Fitzgerald M. Long-term sensory hyperinnervation following neonatal skin wounds. Journal of Comparative Neurology 1995;358(4):487-498.
Rosen LB, Ginty DD, Weber MJ, Greenberg ME. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 1994;12(6):1207-1221.
Ruda MA, Ling QD, Hohmann AG, Peng YB, Tachibana T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation.[see comment]. Science 2000;289(5479):628-631.
Saigal S, Feeny D, Rosenbaum P, Furlong W, Burrows E, Stoskopf B. Self-perceived health status and health-related quality of life of extremely low-birth-weight infants at adolescence.[see comment]. JAMA 1996;276(6):453-459.
Shimada C, Kurumiya S, Noguchi Y, Umemoto M. The effect of neonatal exposure to chronic footshock on pain-responsiveness and sensitivity to morphine after maturation in the rat. Behavioural Brain Research 1990;36(1-2):105-111.
Shortland P, Fitzgerald M. Neonatal sciatic nerve section results in a rearrangement of the central terminals of saphenous and axotomized sciatic nerve afferents in the dorsal horn of the spinal cord of the adult rat. European Journal of Neuroscience 1994;6(1):75-86.
Shyu BC, Sun WZ, Huang LH. A novel method of testing pain threshold in rat by using brief CO2 laser pulse stimulation. Chinese J Pain 1995(5):3-14.
Simons SH, van Dijk M, Anand KS, Roofthooft D, van Lingen RA, Tibboel D. Do we still hurt newborn babies? A prospective study of procedural pain and analgesia in neonates. Archives of Pediatrics & Adolescent Medicine 2003;157(11):1058-1064.
Stevens B, Gibbins S, Franck LS. Treatment of pain in the neonatal intensive care unit. Pediatric Clinics of North America 2000;47(3):633-650.
Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nature Neuroscience 2002;5(12):1319-1326.
Tachibana T, Ling QD, Ruda MA. Increased Fos induction in adult rats that experienced neonatal peripheral inflammation. Neuroreport 2001;12(5):925-927.
Taddio A, Goldbach M, Ipp M, Stevens B, Koren G. Effect of neonatal circumcision on pain responses during vaccination in boys.[see comment]. Lancet 1995;345(8945):291-292.
Taddio A, Stevens B, Craig K, Rastogi P, Ben-David S, Shennan A, Mulligan P, Koren G. Efficacy and safety of lidocaine-prilocaine cream for pain during circumcision.[see comment]. New England Journal of Medicine 1997;336(17):1197-1201.
Tao YX, Wei F, Zhao ZQ. A contribution of neurokinin-1 receptor to formalin-induced c-fos expression in the rat spinal dorsal horn. Neuroscience Letters 1997;221(2-3):105-108.
Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience 2004;5(3):173-183.
Todd AJ. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Experimental Physiology 2002;87(2):245-249.
Todd AJ, Puskar Z, Spike RC, Hughes C, Watt C, Forrest L. Projection neurons in lamina I of rat spinal cord with the neurokinin 1 receptor are selectively innervated by substance p-containing afferents and respond to noxious stimulation. Journal of Neuroscience 2002;22(10):4103-4113.
Torsney C, Fitzgerald M. Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury. Journal of Physiology 2003;550(Pt 1):255-261.
Traub RJ. The spinal contribution of substance P to the generation and maintenance of inflammatory hyperalgesia in the rat. Pain 1996;67(1):151-161.
Woodbury CJ, Koerber HR. Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. Journal of Neuroscience 2003;23(2):601-610.
Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 2002;110(4):443-455.
Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005;114(1-2):149-159.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top